Page 334 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 334

Appendix E












         E.1   Canonical Transformation: Procedure to Calculate
         the Transformation Matrix and its Inverse

         The simplification of a multivariate analysis into n single trait analyses using canoni-
         cal transformation involves transforming the observations of several correlated traits
         into new uncorrected traits (Section 6.2). The transformation matrix Q can be calcu-
         lated by the following procedure, which has been illustrated by the G and R matrices
         for Example 6.1 in Section 6.2.2.
            The G and R matrices are, respectively:
             WWG     é 20 18ù      WWG     é 40 11ù
                     ê       ú  and        ê       ú
             PWG     ë 18 40 û     PWG     ë 11 30 û
         where WWG is the pre-weanng gain and PWG is the post-weaning gain.
         1. Calculate the eigenvalues (B) and eigenvectors (U) of R:
            R = UBU′
         For the above R:
            B = diag(47.083, 22.917)

         and:
                é 0.841 - 0.541ù
            U =  ê            ú
                ë 0.541  0.841 û
         2. Calculate P and PGP′:
            P = U B −1 U′
                é  0.1642 - 0.0288ù          é 0.403 0.264ù
            P =  ê               ú  and PG P′ =  ê        ú
                ë - 0.0288  0.1904 û         ë 0.2264 1.269 û

         3. Calculate the eigenvalues (W) and eigenvectors (L) of PGP′:
            PGP′ = LWL′

            W = diag(0.3283, 1.3436)
         and:
               é  0.963 0.271ù
            L =  ê           ú
               ë - 0.271 0.963 û



          318            © R.A. Mrode 2014. Linear Models for the Prediction of Animal Breeding Values,
                                                                3rd Edition (R.A. Mrode)
   329   330   331   332   333   334   335   336   337   338   339