Page 337 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 337

−1
        Partitioning Q and Q  as specified above gives the following matrices:
                 ⎡ 0.1659⎤      ⎡− 0.0792⎤
            Q  =  ⎢     ⎥ ,  Q  =  ⎢     ⎥ ,
              v              m
                 ⎣ 0.0168 ⎦     ⎣  0.1755 ⎦
                [
              v
            Q = 5.76651 2.6006] and Q  m  =  [− 0.5503 5.4495]
        From the residual covariance matrix in Section E.1:
                 −1
            R R  = 11/40 = 0.275
             mv  vv
        The matrices Q  and Q , respectively, are:
                      1      2
                                              .
                 é0 1659.  ù  - é 0 0792.  ù  é 0 1441ù
            Q =           +         0 275  =
                                      .
              1  ê      ú  ê       ú        ê      ú
                 ë 0 0168  û  ë 0 1755  û   ë 0 06544 û
                                              .
                             .
                   .
        and:
                   − ⎡ ⎡  0.0792⎤                 − ⎡  0.0792⎤                ⎤
            Q  =   ⎢ ⎢    ⎥  − [  0.5503 5.4495]  −  ⎢   ⎥ 0.275 [5.7651 2.6006 ]⎥
              2
                  ⎣ ⎣  0.1755 ⎦                  ⎣ ⎣  0.1755 ⎦                ⎦
                 ⎡  0.1691 − 0.3750⎤
                 =  ⎢             ⎥
                 ⎣ − 0.3748  0 0.8309 ⎦
            Employing steps 1 to 4 given earlier to the data in Example 5.2, using the various
        transformation matrices given above and solving for sex and animal solutions by
        iterating on the data (see Section 17.4), gave the following solutions on the canonical
        scale at convergence. The solutions on the original scale are also presented.

                              Canonical scale                    Original scale
        Effects           VAR1             VAR2            WWG              PWG

        Sex
           Male           0.180            1.265            4.326            6.794
           Female         0.124            1.108            3.598            5.968
        Animal
           1              0.003            0.053            0.154            0.288
           2             −0.006           −0.010           −0.059           −0.054
           3              0.003           −0.030           −0.062           −0.163
           4              0.002            0.007            0.027            0.037
           5             −0.010           −0.097           −0.307           −0.521
           6              0.001            0.088            0.235            0.477
           7             −0.011           −0.084           −0.280           −0.452
           8              0.013            0.076            0.272            0.407
           9              0.009            0.010            0.077            0.051
        VAR1, Qy , VAR2, Qy  with WWG = y  and PWG = y .
               1        2          1          2
        These are similar to the solutions obtained from the multivariate analysis in Section 5.3
        or the application of the Cholesky transformation in Section 6.3. The advantage of
        this methodology is that the usual univariate programs can easily be modified to
        incorporate missing records.



        Appendix E                                                           321
   332   333   334   335   336   337   338   339   340   341   342