Page 338 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 338

The prediction of the missing record (PWG) for animal 4 using solutions on
         canonical and original scales at convergence is illustrated below.
            Using Eqn e.1:
                 ˆ
                                       ˆ
                               −1
            y  = b  + aˆ  + R R (y  − b  − aˆ )
             42   12   42   mv  vv  41  11  41
               = 6.836 + 0.016 + 0.275(4.5 − 4.366 − 0.007)
               = 6.9
                                                                               ˆ
         where y  and aˆ  are the record and EBV, respectively, for animal i and trait j, and b
               ij    ij                                                         kj
         is the fixed effect solution for level k for trait j.
            Using Eqn e.2:
             ˆ y ⎡  * 41 ⎤
                                   a
            ⎢   ⎥  = Q 1  y + Q 2 (x b′  ˆ *  +  )
                                    ˆ *
                                     4
                       41
            ⎣  ˆ y * 42 ⎦
             ˆ y ⎡  * 41 ⎤  ⎡0.648 ⎤  ⎡0.183 ⎤  ⎡0.000⎤
            ⎢   ⎥ ⎥  =  ⎢  ⎥  + Q 2 ⎢  ⎥  + Q 2 ⎢  ⎥
            ⎣  ˆ y * 42 ⎦  ⎣ 0.294 ⎦  ⎣ 1.273 ⎦  ⎣ ⎣ 0.003 ⎦
                   ⎡0.648 ⎤  ⎡ 0.446−  ⎤  ⎡ 0.202⎤
                 = ⎢     ⎥   +  ⎢  ⎥   =  ⎢  ⎥
                   ⎣ 0.294 ⎦  ⎣  0.989 ⎦  ⎣ 1.2883 ⎦
         These predicted records for animal 4 are on the canonical scale and they are used for
         the next round of iteration if convergence has not been achieved. These predicted
         records can be transformed to the original scale as:
             ˆ y ⎡  41 ⎤  −1  ⎡0.202 ⎤ ⎡4.5 ⎤
                              =
            ⎢   ⎥  = Q  ⎢   ⎥ ⎢   ⎥
            ⎣  ˆ y 42⎦  ⎣ 1.283 ⎦ ⎣ 6.9 ⎦
         The record for WWG is as observed and predicted missing record for PWG is the
         same as when using Eqn e.1.



         E.3 Cholesky Decomposition

         Any positive semi-definite symmetric matrix R can be expressed in the form TT′,
         where T is a lower triangular matrix. The matrix  T can be calculated using the
         following formulae. The ith diagonal element of T is calculated as:

                     i−1
             ii t  = r −  ij t ∑  2
                 ii
                     j=1
         and the lower off-diagonal element of the ith row and the kth column of T as:

                   ⎛    k 1   ⎞
                         −
                 1
             ik t  =   r ⎜  ik −  t ∑  ij kj t ⎟
                t kk ⎝  j=1   ⎠








          322                                                            Appendix E
   333   334   335   336   337   338   339   340   341   342   343