Page 342 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 342

j/2   r
                        −12
                  1     () (  j − 2 r)!  j−2 r
            Pt() =  j ∑             t
             j
                  2  r=0 rj !( −  r)!( − 2 r)!
                               j
         where j/2 = (j − 1)/2 if j is odd. The first five Legendre polynomials therefore are:
                                      2
            P (t) = 1; P (t) = t; P (t) =  (3t  − 1)
                                   1
             0        1       2    2
                                          4
                      3
                                                2
            P (t) =  (5t  − 3t); and P (t) = (35t  − 30t  + 3)
                                      1
                   1
             3     2             4    8
         The normalized value of the jth Legendre polynomial evaluated at age t (f (t)) can be
                                                                        j
         obtained as:
            f t() =  2 n + 1 Pt()
             j            j
                     2
         Thus:
            f () =  1  P () =  0 7071;  f () =  3  P () =  1 2247( )
                                                   .
                                                        t
                                     t
                       t
                            .
                                              t
               t
             0      2  0            1     2  1
            f () =  5  P  () = 2 3717.  ( ) - 0 7906;  ( ) =  7  P  ( ) =  4 6771( ) -  2 8067( )
                                   2
                                                                    3
                                  t
                                                                         .
                                       .
                                                 t
                        t
                                                         t
                                                              .
                                                                    t
                                                                              t
                           2
               t
             2      2  2                       f 3    2  3
                                                 2
                                      4
                           t
                                     t
                                                t
             and  f (()t =  9 P  () = 9 .2808 ( ) - 7 .9550 ( ) + 0 .7955
                  4     2  4
         Therefore, for t = 5 in Example 9.1, L is:
                ⎡ 0.7071 0.0000  −0.7906   0.0000   0.7955⎤
                ⎢                                         ⎥
                ⎢ 0.0000 1.2247   0.0000  −2.80667  0.0000 ⎥
                ⎢
            L = 0.0000 0.0000     2.3717   0.0000 − 7.9550⎥
                ⎢                                         ⎥
                ⎢ 0.0000 0.0000   0.0000   4 4.6771  0.0000 ⎥
                ⎢ ⎣ 0.0000 0.0000  0.0000  0.0000   9.2808 ⎥ ⎥ ⎦
         and F = ML is:
                ⎡ 0 7071  −1 2247  1 5811  −1 8704   2 1213⎤
                                    .
                                                      .
                           .
                                             .
                  .
                ⎢                                   −      ⎥
                                                      .
                           .
                  .
                                    .
                ⎢ 0 7071  −0 9525  0 6441  −0.00176  0 6205 ⎥ ⎥
                ⎢ 0 7071 − 0 6804 − 0 0586  0 7573 − 0 7757⎥
                                                      .
                                             .
                                    .
                           .
                  .
                ⎢                                          ⎥
                           .
                  .
                                             .
                ⎢ 0 7071 − 0 4082  − −0 5271  0 7623  0 0262 ⎥
                                                      .
                                    .
                ⎢ 0 7071  −0 1361  −0 7613  0 3054   0 6987 ⎥
                                                      .
                  .
                                    .
                                             .
                           .
            F = ⎢                                          ⎥                  (g.1)
                                             .
                           .
                                    .
                ⎢ 0 7071  0 0 1361 − 0 7613 − 0 3054  0 6987 ⎥
                                                      .
                  .
                ⎢ 0 7071  0 4082  − 0 5271 − 0 7623  0 0262 ⎥
                                                          2
                                                      .
                  .
                                             .
                           .
                                    .
                ⎢                                          ⎥
                ⎢ 0 7071  0 6804 − 0 0586  − 0 7573 − 0 7757⎥
                  .
                                                      .
                           .
                                    .
                                             .
                ⎢                                          ⎥
                                                      .
                           .
                                    .
                  .
                                             .
                                                 6
                ⎢ 0 7071  0 9525   0 6441   0 0176  − 0 6205 ⎥
                ⎢ ⎣ 0 7071  1 2247  1 5811  1 8704   2 1213⎥ ⎦
                                                      .
                  .
                                             .
                           .
                                    .
          326                                                            Appendix G
   337   338   339   340   341   342   343   344   345   346   347