Page 339 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 339

Appendix F: Procedure for


        Computing Deregressed

        Breeding Values





        The deregressed breeding values (DRB) of bulls used in multi-trait across-country
        evaluations (MACE) are obtained by solving Eqn 5.15 for y considering data from
        only one country at a time. Jairath et al. (1998) presented an algorithm for calculating
        DRP. For instance, Eqn 5.15 for country i can be written as:
            æ 1R 1   1 R -1       0      0    ö               -1
              ′
                      ′
                -1
                                                           1R y ö
            ç   i       i                     ÷ æ  ˆ m i  ö  æ ′  i  i  ÷
                                                          ç
               -1
                                   -1
                                          -1
                            -1
            ç R1     R -1  +  A a i  A a i  A a ÷ ç Qg + ˆ s ii ÷ ÷  ç  -1  ÷
                                             i
                                   np
                                          ng
              i
                       i
                            nn
            ç                                 ÷ ç  i    = ç Ry i  ÷           (f.1)
                                                             i
            ç 0      A a  i       A a i  A -1 a ÷ p ˆ ç  i  ÷  ç 0  ÷
                                    1
                       -1
                                   -1
                                             i
                                   pp
                                           pg
                       pn
            ç                                 ÷ç ç     ÷ ÷  ç     ÷
            ç          -1          -1     -1  ÷è  ˆ g i  ø  è 0   ø
            è 0      A gn a i     A gp a i  A gg  a i ø
                                                                 −1
        where p  is the vector of identified parents without EBV and A   are blocks of the
                i                                                jj
        inverse of the relationship (see Chapter 3, Section 3.6) with j = n, p and g for animals
                                                                        2
                                                                     2
        with records, ancestors and genetic groups, respectively, and a  = (4 − h )/h , the ratio
                                                              i      i  i
        of residual variance to sire variance for the  ith country. The deregression of EBV
        involves solving Eqn f.1 for  y . The constant  m  and vectors  s , p , g  and  y  are
                                    i              i             i  i  i     i
        unknown but a , the vector of genetic evaluations for sires, is known, as well as matri-
                     i
        ces Q, R  and A . Let a  = 1m  + Qg  + s . The following iterative procedure can be
                −1
                       −1
                 i      jj    i    i     i  i
        used to compute the vector of DRB, y :
                                          i
        1. Set 1m , p , s  and g  to 0.
                i  i  i    i
        2. Calculate Qg  + s  = a  − 1m .
                      i   i   i    i
        3. Compute:
                              -1
                           -1
                                  -1
            æ  ˆ p ö  æ A  -1  A ö æ A ö ö
                           pg
                                  pn
                      pp
              i
                                           s ˆ
            ç  ÷  =-ç        ÷ ç    ÷ (Qg ˆ  i  + )
                                            i
            è  ˆ g i ø  ç è A -1  A -1  ÷ ç  A -1 ÷
                             ø è
                                  gn ø
                      gp
                           gg
        4. Generate:
            Ry =   R 1m i  + ( R -1  +  A )( Q +gˆ i  s + A p a i  +  A gˆ  a i
                                                        -1
              -1
                                               -1
                                  -1
                     -1
                                           )
                                               pn i
                i
                                  nn
                                          i
                             i
                                                        gn i
             i
                    i
               −1
        and 1′R y
                i  i.
        5. Now calculate:
                           −1
                       −1
                    −1
            m  = (1′R 1) 1′R y
             i      i      i  i
        6. Continue at step 2 until convergence is achieved.
                                        −1
        7. Then compute DRB as y  = R  (R y ).
                                i   i   i  i
            Using the data for country 1 in Example 5.5, the deregression steps above are
        illustrated in the first iteration. For country 1, a  = 206.50/20.5 = 10.0732 and, con-
                                                  1
        sidering only the bulls with evaluations, R  = diag(0.0172, 0.0067, 0.0500, 0.0400).
                                             1
        © R.A. Mrode 2014. Linear Models for the Prediction of Animal Breeding Values,   323
        3rd Edition (R.A. Mrode)
   334   335   336   337   338   339   340   341   342   343   344