Page 340 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 340

The pedigree structure (see Example 5.5) used for the deregression of breeding values
         in country 1 is:
                           Bull      Sire       MGS        MGD

                           1          5          G2         G3
                           2          6          7          G4
                           3          5          2          G4
                           4          1          G2         G4
                           5          G1         G2         G3
                           6          G1         G2         G3
                           7          G1         G2         G3

            The matrix A   was calculated according to the rules in Section 5.5.2.
                        −1
                        1
            In the first round of iteration, the transpose of the vector Qg  + s  in step 2 above is:
                                                              1   1
            (Qg  + s )′ = (9.0 10.1 15.8 −4.7)
               1   1
         The vector of solutions for p  and g  in step 3 is computed as:
                                 1      1
                  é 17.094  0.000   0.000 - 5.037 - 0.839 - 0.839 1.831ù -1
                  ê                 1.831 -        - 2.518 -            ú
                        0
                  ê  0.000 13.736           5.037           2.518 1.831 ú
                  ê  0.000  1.831 10.989 -  5.037  - -2.518  -2.518 0.916ú
              ˆ p é  1 ù ê ê                                            ú
                 =  -5.037
             ê  ú ê        -5.037  -5.037   8.555   3.777   3.777 0.000 ú
             ë  ˆ g 1û  ê  - 2.518 -                                    ú
                  ê -0..839         2.518   3.777    4.568  2.728 0.839 ú
                  ê - 0.839  - 2.518 - 2.518  3.7777  2.728  3.728 0.000 ú
                  ê                                                     ú
                  ë  1.831  1.831   0.916   0.000   0.839   0.000 3.671 û
                  é é  6.716 - 1.831 7.326 0.000ù       é 16.330ù
                                                             0
                  ê                            ú        ê      ú
                  ê  0.000  7.3326 0.000 0.000 ú  é 9.0 ù  ê 12.861 ú
                  ê  0.000  3.663 0.000 0.000ú  ê    ú  ê 12.622ú
                  ê                            ú 10.1 ú  ê     ú
                                                ê
                  ê  0.000  0.000 0.000 0.000  ú     ú  =  23.481 ú
                                                        ê
                  ê  1.679  0.000 0.000 3.357 ê ê15.8 ú  ê - 9.801 ú
                                               ú
                        9
                  ê                            ú - 4.7 û  ê    ú
                                                ë
                  ê  3.357  0.000 0.000 0.000 ú         ê 12.375 ú ú
                  ê                            ú        ê      ú
                  ë - 1.679  2.747 3.663 3.357 û        ë - 0.564 û
                                   −1
         The transpose of the vector (R y ) in step 4 is: (30.2 9.0 10.1 15.8) and:
                                   1  1
            1′R y  = 2235.50
               −1
               1  1
         Therefore, in the first round of iteration (step 4):
            m  = 2235.50/253 = 8.835
             1
         Convergence was achieved after about six iterations. The transpose of the vector
         (R y ) after convergence is:
           −1
           1  1
              −1
            (R y )′ = (563.928 1495.751 385.302 −214.278)
              1  1
               −1
         with R  = diag(0.0172, 0.0067, 0.050, 0.04), the transpose of the vector of DRB
               1
         calculated in step 7 is:
            y′ = (9.7229 9.9717 9.2651 −8.5711)
             1
          324                                                            Appendix F
   335   336   337   338   339   340   341   342   343   344   345