Page 270 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 270
CHAPTER 14 Cancer Immunotherapy 249
established melanoma after transfer into lymphopenic hosts, J Exp lymphocytes by modifying the Th1 polarization and local infiltra-
Med 207(3):637–650, 2010. tion of Th17 cells, Clin Dev Immunol 410893, 2010.
238. Xie Y, Akpinarli A, Maris C, et al.: Naive tumor-specific CD4(+) 258. Park JS, Withers SS, Modiano JF, et al.: Canine cancer immuno-
VetBooks.ir T cells differentiated in vivo eradicate established melanoma, J Exp therapy studies: linking mouse and human, J Immunother Cancer
4:97, 2016.
Med 207(3):651–667, 2010.
239. Corthay A, Lorvik KB, Bogen B: Is secretion of tumour-specific
lation of new cancer treatments from canine to human cancer
antigen important for cancer eradication by CD4(+) T cells?— 259. Khanna C, London C, Vail D, et al.: Guiding the optimal trans-
Implications for cancer immunotherapy by adoptive T cell transfer, patients, Clin Cancer Res 15(18):5671–5677, 2009.
Scand J Immunol 73(6):527–530, 2011. 260. Withrow SJ, Khanna C: Bridging the gap between experimental
240. Hanson HL, Donermeyer DL, Ikeda H, et al.: Eradication of estab- animals and humans in osteosarcoma, Cancer Treat Res 152:439–
lished tumors by CD8+ T cell adoptive immunotherapy, Immunity 446, 2009.
13(2):265–276, 2000. 261. Stewart TJ, Smyth MJ: Improving cancer immunotherapy by tar-
241. Klebanoff CA, Finkelstein SE, Surman DR, et al.: IL-15 enhances geting tumor-induced immune suppression, Cancer Metastasis Rev
the in vivo antitumor activity of tumor-reactive CD8+ T cells, Proc 30(1):125–140, 2011.
Natl Acad Sci U S A 101(7):1969–1974, 2004. 262. Hafeman SD, Varland D, Dow SW: Bisphosphonates significantly
242. May KF, Chen L, Zheng P, Liu Y: Anti-4-1BB monoclonal anti- increase the activity of doxorubicin or vincristine against canine
body enhances rejection of large tumor burden by promoting sur- malignant histiocytosis cells, Vet Comp Oncol 10(1):44–56, 2012.
vival but not clonal expansion of tumor-specific CD8+ T cells, 263. Melani C, Sangaletti S, Barazzetta FM, et al.: Amino-biphos-
Cancer Res 62(12):3459–3465, 2002. phonate-mediated MMP-9 inhibition breaks the tumor-bone
243. Casucci M, Bondanza A, Falcone L, et al.: Genetic engineering marrow axis responsible for myeloid-derived suppressor cell expan-
of T cells for the immunotherapy of haematological malignancies, sion and macrophage infiltration in tumor stroma, Cancer Res
Tissue Antigens 79(1):4–14, 2012. 67(23):11438–11446, 2007.
244. Cruz CR, Micklethwaite KP, Savoldo B, et al.: Infusion of donor- 264. Priceman SJ, Sung JL, Shaposhnik Z, et al.: Targeting distinct
derived CD19-redirected virus-specific T cells for B-cell malignan- tumor-infiltrating myeloid cells by inhibiting CSF-1 recep-
cies relapsed after allogeneic stem cell transplant: a phase 1 study, tor: combating tumor evasion of antiangiogenic therapy, Blood
Blood 122(17):2965–2973, 2013. 115(7):1461–1471, 2010.
245. Riches JC, Gribben JG: Advances in chimeric antigen receptor 265. Pan PY, Ma G, Weber KJ, et al.: Immune stimulatory recep-
immunotherapy for chronic lymphocytic leukemia, Discov Med tor CD40 is required for T-cell suppression and T regulatory cell
16(90):295–302, 2013. activation mediated by myeloid-derived suppressor cells in cancer,
246. Cheadle EJ, Gornall H, Baldan V, et al.: CAR T cells: driving the Cancer Res 70(1):99–108, 2010.
road from the laboratory to the clinic, Immunol Rev 257(1):91– 266. De Santo C, Serafini P, Marigo I, et al.: Nitroaspirin corrects
106, 2014. immune dysfunction in tumor-bearing hosts and promotes tumor
247. Cieri N, Mastaglio S, Oliveira G, et al.: Adoptive immunotherapy eradication by cancer vaccination, Proc Natl Acad Sci U S A
with genetically modified lymphocytes in allogeneic stem cell trans- 102(11):4185–4190, 2005.
plantation, Immunol Rev 257(1):165–180, 2014. 267. Suzuki E, Kapoor V, Jassar AS, et al.: Gemcitabine selectively elim-
248. Mata M, Vera JF, Gerken C, et al.: Toward immunotherapy with inates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-
redirected T cells in a large animal model: ex vivo activation, expan- bearing animals and enhances antitumor immune activity, Clin
sion, and genetic modification of canine T cells, J Immunother Cancer Res 11(18):6713–6721, 2005.
37(8):407–415, 2014. 268. Mirza N, Fishman M, Fricke I, et al.: All-trans-retinoic acid
249. Panjwani MK, Smith JB, Schutsky K, et al.: Feasibility and safety of improves differentiation of myeloid cells and immune response in
RNA-transfected CD20-specific chimeric antigen receptor T cells cancer patients, Cancer Res 66(18):9299–9307, 2006.
in dogs with spontaneous B cell lymphoma, Mol Ther 24(9):1602– 269. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S:
1614, 2016. Prostaglandin E2 promotes tumor progression by inducing
250. Yannelli JR, Wroblewski JM: On the road to a tumor cell vaccine: myeloid-derived suppressor cells, Cancer Res 67(9):4507–4513,
20 years of cellular immunotherapy, Vaccine 23(1):97–113, 2004. 2007.
251. Blakeslee J, Noll G, Olsen R, Triozzi PL: Adoptive immunother- 270. Curran MA, Montalvo W, Yagita H, Allison JP: PD-1 and CTLA-4
apy of feline leukemia virus infection using autologous lymph combination blockade expands infiltrating T cells and reduces reg-
node lymphocytes, J Acquir Immune Defic Syndr Hum Retrovirol ulatory T and myeloid cells within B16 melanoma tumors, Proc
18(1):1–6, 1998. Natl Acad Sci U S A 107(9):4275–4280, 2010.
252. Yron I, Wood TA, Spiess PJ, Rosenberg SA: In vitro growth of 271. Serafini P, Mgebroff S, Noonan K, Borrello I: Myeloid-derived
murine T cells. V. The isolation and growth of lymphoid cells infil- suppressor cells promote cross-tolerance in B-cell lymphoma by
trating syngeneic solid tumors, J Immunol 125(1):238–245, 1980. expanding regulatory T cells, Cancer Res 68(13):5439–5449,
253. Rosenberg SA, Restifo NP, Yang JC, et al.: Adoptive cell transfer: 2008.
a clinical path to effective cancer immunotherapy, Nat Rev Cancer 272. Vincent J, Mignot G, Chalmin F, et al.: 5-Fluorouracil selectively
8(4):299–308, 2008. kills tumor-associated myeloid-derived suppressor cells resulting
254. Dudley ME, Rosenberg SA: Adoptive-cell-transfer therapy for the in enhanced T cell-dependent antitumor immunity, Cancer Res
treatment of patients with cancer, Nat Rev Cancer 3(9):666–675, 70(8):3052–3061, 2010.
2003. 273. Kodumudi KN, Woan K, Gilvary DL, et al.: A novel chemoim-
255. Dudley ME, Wunderlich JR, Yang JC, et al.: A phase I study of munomodulating property of docetaxel: suppression of myeloid-
nonmyeloablative chemotherapy and adoptive transfer of autolo- derived suppressor cells in tumor bearers, Clin Cancer Res
gous tumor antigen-specific T lymphocytes in patients with meta- 16(18):4583–4594, 2010.
static melanoma, J Immunother 25(3):243–251, 2002. 274. Nagaraj S, Youn JI, Weber H, et al.: Anti-inflammatory triterpe-
256. Rosenberg SA, Dudley ME: Cancer regression in patients with noid blocks immune suppressive function of MDSCs and improves
metastatic melanoma after the transfer of autologous antitumor immune response in cancer, Clin Cancer Res 16(6):1812–1823,
lymphocytes, Proc Natl Acad Sci U S A 101(Suppl 2):14639–14645, 2010.
2004. 275. Ko JS, Zea AH, Rini BI, et al.: Sunitinib mediates reversal of
257. Xu L, Wang C, Wen Z, et al.: CpG oligodeoxynucleotides enhance myeloid-derived suppressor cell accumulation in renal cell carci-
the efficacy of adoptive cell transfer using tumor infiltrating noma patients, Clin Cancer Res 15(6):2148–2157, 2009.