Page 265 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 265

244   PART III    Therapeutic Modalities for the Cancer Patient


              directly promotes tumor angiogenesis, Cancer Cell 6(4):409–421,   the development of colorectal cancer liver metastasis, Hepatology
              2004.                                                 (Baltimore, Md)  57(2):829–839, 2013.
          38.   Hiratsuka S, Watanabe A, Aburatani H, Maru Y: Tumour-mediated    58.   Liu Y, Cao X: Characteristics and significance of the pre-metastatic
  VetBooks.ir  upregulation of chemoattractants and recruitment of myeloid cells    59.   Alfaro  C, Teijeira  A, Onate C, et  al.: Tumor-produced interleu-
                                                                    niche, Cancer Cell 30(5):668–681, 2016.
              predetermines lung metastasis,  Nat Cell Biol 8(12):1369–1375,
              2006.
          39.   Kusmartsev S, Gabrilovich DI: Role of immature myeloid cells in   kin-8 attracts human myeloid-derived suppressor cells and elicits
                                                                    extrusion of neutrophil extracellular traps (NETs), Clin Cancer Res
              mechanisms of immune evasion in cancer, Cancer Immunol Immu-  22(15):3924–3936, 2016.
              nother 55(3):237–245, 2006.                       60.   Zhang  H, Ye YL, Li MX, et  al.: CXCL2/MIF-CXCR2 signal-
          40.   Bunt SK, Yang L, Sinha P,  et al.: Reduced inflammation in the   ing promotes the recruitment of myeloid-derived suppressor
              tumor  microenvironment  delays  the  accumulation  of  myeloid-  cells and is correlated with prognosis in bladder cancer, Oncogene
              derived suppressor cells and limits tumor progression, Cancer Res   36(15):2095–2104, 2017.
              67(20):10019–10026, 2007.                         61.   Joyce JA, Pollard JW: Microenvironmental regulation of metastasis,
          41.   Gabrilovich  DI, Nagaraj S: Myeloid-derived suppressor cells as   Nat Rev Cancer 9(4):239–252, 2009.
              regulators of the immune system, Nat Rev Immunol 9(3):162–174,    62.   Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg
              2009.                                                 S: Cross-talk between myeloid-derived suppressor cells and mac-
          42.   Ostrand-Rosenberg S, Sinha P: Myeloid-derived suppressor cells:   rophages subverts tumor immunity toward a type 2 response,
              linking inflammation and cancer, J Immunol 182(8):4499–4506,   J Immunol 179(2):977–983, 2007.
              2009.                                             63.   Li H, Han Y, Guo Q, Zhang M, Cao X: Cancer-expanded myeloid-
          43.   Ye XZ, Yu SC, Bian XW: Contribution of myeloid-derived sup-  derived suppressor cells induce anergy of NK cells through mem-
              pressor cells to tumor-induced immune suppression, angiogenesis,   brane-bound TGF-beta1, J Immunol 182(1):240–249, 2009.
              invasion and metastasis, J Genet Genomics 37(7):423–430, 2010.   64.   Miller AM, Lundberg K, Ozenci V, et al.: CD4+CD25 high T cells
          44.   Youn JI, Gabrilovich DI: The biology of myeloid-derived suppres-  are enriched in the tumor and peripheral blood of prostate cancer
              sor cells: the blessing and the curse of morphological and functional   patients, J Immunol 177(10):7398–7405, 2006.
              heterogeneity, Eur J Immunol 40(11):2969–2975, 2010.   65.   O’Neill K, Guth A, Biller B, Elmslie R, Dow S: Changes in regula-
          45.   Murdoch  C, Muthana M, Coffelt SB, Lewis CE: The role of   tory T cells in dogs with cancer and associations with tumor type,
              myeloid cells in the promotion of tumour angiogenesis, Nat Rev   J Vet Intern Med 23(4):875–881, 2009.
              Cancer 8(8):618–631, 2008.                        66.   Biller BJ, Guth A, Burton JH, Dow SW: Decreased ratio of CD8+
          46.   Qian BZ, Pollard JW: Macrophage diversity enhances tumor pro-  T cells to regulatory T cells associated with decreased survival in
              gression and metastasis, Cell 141(1):39–51, 2010.     dogs with osteosarcoma, J Vet Intern Med 24(5):1118–1123, 2010.
          47.   Almand  B, Clark JI, Nikitina E, et  al.: Increased production    67.   Nomura T, Sakaguchi S: Naturally arising CD25+CD4+ regula-
              of immature myeloid cells in cancer patients: a mechanism of   tory  T cells in tumor immunity,  Curr  Top Microbiol Immunol
              immunosuppression in cancer,  J Immunol 166(1):678–689,   293:287–302, 2005.
              2001.                                             68.   Fontenot JD, Rudensky AY: A well adapted regulatory contrivance:
          48.   Diaz-Montero CM, Salem ML, Nishimura MI,  et al.:  Increased   regulatory T cell development and the forkhead family transcrip-
              circulating myeloid-derived suppressor cells correlate with clini-  tion factor Foxp3, Nat Immunol 6(4):331–337, 2005.
              cal cancer stage, metastatic tumor burden, and doxorubicin-   69.   Camisaschi C, Casati C, Rini F, et al.: LAG-3 expression defines a
              cyclophosphamide chemotherapy,  Cancer Immunol Immunother   subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are
              58(1):49–59, 2009.                                    expanded at tumor sites, J Immunol 184(11):6545–6551, 2010.
          49.   Mandruzzato  S,  Solito  S,  Falisi  E,  et  al.:  IL4  Ralpha+  myeloid-   70.   Shimizu J, Yamazaki S, Takahashi T, et al.: Stimulation of CD25(+)
              derived suppressor cell expansion in cancer patients,  J Immunol   CD4(+) regulatory T cells through GITR breaks immunological
              182(10):6562–6568, 2009.                              self-tolerance, Nat Immunol 3(2):135–142, 2002.
          50.   Melani  C, Chiodoni C, Forni G, Colombo MP: Myeloid cell    71.   Wing  K,  Onishi Y, Prieto-Martin P, et  al.: CTLA-4 control over
              expansion elicited by the progression of spontaneous mammary car-  Foxp3+ regulatory T cell function, Science 322(5899):271–275, 2008.
              cinomas in c-erbB-2 transgenic BALB/c mice suppresses immune    72.   Yamaguchi T, Hirota K, Nagahama K, et al.: Control of immune
              reactivity, Blood 102(6):2138–2145, 2003.             responses by antigen-specific regulatory T cells expressing the folate
          51.   Casacuberta-Serra S, Pares M, Golbano A,  et al.:  Myeloid-derived   receptor, Immunity 27(1):145–159, 2007.
              suppressor cells can be efficiently generated from human hemato-   73.   Qin FX: Dynamic behavior and function of Foxp3+ regulatory T
              poietic progenitors and peripheral blood monocytes, Immunol Cell   cells in tumor bearing host, Cell Mol Immunol 6(1):3–13, 2009.
              Biol 95(6):538–548, 2017.                         74.   Chen  W,  Jin W, Hardegen N, et  al.: Conversion of peripheral
          52.   Bosco MC, Puppo M, Blengio F, et al.: Monocytes and dendritic   CD4+CD25- naive  T cells to CD4+CD25+ regulatory  T cells
              cells in a hypoxic environment: Spotlights on chemotaxis and   by TGF-beta induction of transcription factor Foxp3, J Exp Med
              migration, Immunobiology 213(9-10):733–749, 2008.     198(12):1875–1886, 2003.
          53.   Du R, Lu KV, Petritsch C, et al.: HIF1alpha induces the recruitment    75.   Chen W, Wahl SM: TGF-beta: the missing link in CD4+CD25+
              of bone marrow-derived vascular modulatory cells to regulate tumor   regulatory T cell-mediated immunosuppression, Cytokine Growth
              angiogenesis and invasion, Cancer Cell 13(3):206–220, 2008.  Factor Rev 14(2):85–89, 2003.
          54.   Sawanobori Y, Ueha S, Kurachi M, et al.: Chemokine-mediated    76.   Hawiger  D, Wan YY, Eynon EE, Flavell RA: The transcription
              rapid turnover of myeloid-derived suppressor cells in tumor-bear-  cofactor Hopx is required for regulatory T cell function in den-
              ing mice, Blood 111(12):5457–5466, 2008.              dritic cell-mediated peripheral T cell unresponsiveness, Nat Immu-
          55.   Yang L, Huang J, Ren X, et al.: Abrogation of TGF beta signaling   nol 11(10):962–968, 2010.
              in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that    77.   Huehn J, Hamann A: Homing to suppress: address codes for Treg
              promote metastasis, Cancer Cell 13(1):23–35, 2008.    migration, Trends Immunol 26(12):632–636, 2005.
          56.   Liu  CC, Wang YS, Lin CY, et  al.: Transient downregulation of    78.   Hoelzinger DB, Smith SE, Mirza N, Dominguez AL, Manrique
              monocyte-derived dendritic-cell differentiation, function, and sur-  SZ, Lustgarten J: Blockade of CCL1 inhibits T regulatory cell sup-
              vival during tumoral progression and regression in an in vivo canine   pressive function enhancing tumor immunity without affecting T
              model of transmissible venereal tumor, Cancer Immunol Immuno-  effector responses, J Immunol 184(12):6833–6842, 2010.
              ther 57(4):479–491, 2008.                         79.   Curiel TJ, Coukos G, Zou L, et al.: Specific recruitment of regu-
          57.   Zhao  L, Lim SY, Gordon-Weeks AN, et  al.: Recruitment of a   latory T cells in ovarian carcinoma fosters immune privilege and
              myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes   predicts reduced survival, Nat Med 10(9):942–949, 2004.
   260   261   262   263   264   265   266   267   268   269   270