Page 265 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 265
244 PART III Therapeutic Modalities for the Cancer Patient
directly promotes tumor angiogenesis, Cancer Cell 6(4):409–421, the development of colorectal cancer liver metastasis, Hepatology
2004. (Baltimore, Md) 57(2):829–839, 2013.
38. Hiratsuka S, Watanabe A, Aburatani H, Maru Y: Tumour-mediated 58. Liu Y, Cao X: Characteristics and significance of the pre-metastatic
VetBooks.ir upregulation of chemoattractants and recruitment of myeloid cells 59. Alfaro C, Teijeira A, Onate C, et al.: Tumor-produced interleu-
niche, Cancer Cell 30(5):668–681, 2016.
predetermines lung metastasis, Nat Cell Biol 8(12):1369–1375,
2006.
39. Kusmartsev S, Gabrilovich DI: Role of immature myeloid cells in kin-8 attracts human myeloid-derived suppressor cells and elicits
extrusion of neutrophil extracellular traps (NETs), Clin Cancer Res
mechanisms of immune evasion in cancer, Cancer Immunol Immu- 22(15):3924–3936, 2016.
nother 55(3):237–245, 2006. 60. Zhang H, Ye YL, Li MX, et al.: CXCL2/MIF-CXCR2 signal-
40. Bunt SK, Yang L, Sinha P, et al.: Reduced inflammation in the ing promotes the recruitment of myeloid-derived suppressor
tumor microenvironment delays the accumulation of myeloid- cells and is correlated with prognosis in bladder cancer, Oncogene
derived suppressor cells and limits tumor progression, Cancer Res 36(15):2095–2104, 2017.
67(20):10019–10026, 2007. 61. Joyce JA, Pollard JW: Microenvironmental regulation of metastasis,
41. Gabrilovich DI, Nagaraj S: Myeloid-derived suppressor cells as Nat Rev Cancer 9(4):239–252, 2009.
regulators of the immune system, Nat Rev Immunol 9(3):162–174, 62. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg
2009. S: Cross-talk between myeloid-derived suppressor cells and mac-
42. Ostrand-Rosenberg S, Sinha P: Myeloid-derived suppressor cells: rophages subverts tumor immunity toward a type 2 response,
linking inflammation and cancer, J Immunol 182(8):4499–4506, J Immunol 179(2):977–983, 2007.
2009. 63. Li H, Han Y, Guo Q, Zhang M, Cao X: Cancer-expanded myeloid-
43. Ye XZ, Yu SC, Bian XW: Contribution of myeloid-derived sup- derived suppressor cells induce anergy of NK cells through mem-
pressor cells to tumor-induced immune suppression, angiogenesis, brane-bound TGF-beta1, J Immunol 182(1):240–249, 2009.
invasion and metastasis, J Genet Genomics 37(7):423–430, 2010. 64. Miller AM, Lundberg K, Ozenci V, et al.: CD4+CD25 high T cells
44. Youn JI, Gabrilovich DI: The biology of myeloid-derived suppres- are enriched in the tumor and peripheral blood of prostate cancer
sor cells: the blessing and the curse of morphological and functional patients, J Immunol 177(10):7398–7405, 2006.
heterogeneity, Eur J Immunol 40(11):2969–2975, 2010. 65. O’Neill K, Guth A, Biller B, Elmslie R, Dow S: Changes in regula-
45. Murdoch C, Muthana M, Coffelt SB, Lewis CE: The role of tory T cells in dogs with cancer and associations with tumor type,
myeloid cells in the promotion of tumour angiogenesis, Nat Rev J Vet Intern Med 23(4):875–881, 2009.
Cancer 8(8):618–631, 2008. 66. Biller BJ, Guth A, Burton JH, Dow SW: Decreased ratio of CD8+
46. Qian BZ, Pollard JW: Macrophage diversity enhances tumor pro- T cells to regulatory T cells associated with decreased survival in
gression and metastasis, Cell 141(1):39–51, 2010. dogs with osteosarcoma, J Vet Intern Med 24(5):1118–1123, 2010.
47. Almand B, Clark JI, Nikitina E, et al.: Increased production 67. Nomura T, Sakaguchi S: Naturally arising CD25+CD4+ regula-
of immature myeloid cells in cancer patients: a mechanism of tory T cells in tumor immunity, Curr Top Microbiol Immunol
immunosuppression in cancer, J Immunol 166(1):678–689, 293:287–302, 2005.
2001. 68. Fontenot JD, Rudensky AY: A well adapted regulatory contrivance:
48. Diaz-Montero CM, Salem ML, Nishimura MI, et al.: Increased regulatory T cell development and the forkhead family transcrip-
circulating myeloid-derived suppressor cells correlate with clini- tion factor Foxp3, Nat Immunol 6(4):331–337, 2005.
cal cancer stage, metastatic tumor burden, and doxorubicin- 69. Camisaschi C, Casati C, Rini F, et al.: LAG-3 expression defines a
cyclophosphamide chemotherapy, Cancer Immunol Immunother subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are
58(1):49–59, 2009. expanded at tumor sites, J Immunol 184(11):6545–6551, 2010.
49. Mandruzzato S, Solito S, Falisi E, et al.: IL4 Ralpha+ myeloid- 70. Shimizu J, Yamazaki S, Takahashi T, et al.: Stimulation of CD25(+)
derived suppressor cell expansion in cancer patients, J Immunol CD4(+) regulatory T cells through GITR breaks immunological
182(10):6562–6568, 2009. self-tolerance, Nat Immunol 3(2):135–142, 2002.
50. Melani C, Chiodoni C, Forni G, Colombo MP: Myeloid cell 71. Wing K, Onishi Y, Prieto-Martin P, et al.: CTLA-4 control over
expansion elicited by the progression of spontaneous mammary car- Foxp3+ regulatory T cell function, Science 322(5899):271–275, 2008.
cinomas in c-erbB-2 transgenic BALB/c mice suppresses immune 72. Yamaguchi T, Hirota K, Nagahama K, et al.: Control of immune
reactivity, Blood 102(6):2138–2145, 2003. responses by antigen-specific regulatory T cells expressing the folate
51. Casacuberta-Serra S, Pares M, Golbano A, et al.: Myeloid-derived receptor, Immunity 27(1):145–159, 2007.
suppressor cells can be efficiently generated from human hemato- 73. Qin FX: Dynamic behavior and function of Foxp3+ regulatory T
poietic progenitors and peripheral blood monocytes, Immunol Cell cells in tumor bearing host, Cell Mol Immunol 6(1):3–13, 2009.
Biol 95(6):538–548, 2017. 74. Chen W, Jin W, Hardegen N, et al.: Conversion of peripheral
52. Bosco MC, Puppo M, Blengio F, et al.: Monocytes and dendritic CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells
cells in a hypoxic environment: Spotlights on chemotaxis and by TGF-beta induction of transcription factor Foxp3, J Exp Med
migration, Immunobiology 213(9-10):733–749, 2008. 198(12):1875–1886, 2003.
53. Du R, Lu KV, Petritsch C, et al.: HIF1alpha induces the recruitment 75. Chen W, Wahl SM: TGF-beta: the missing link in CD4+CD25+
of bone marrow-derived vascular modulatory cells to regulate tumor regulatory T cell-mediated immunosuppression, Cytokine Growth
angiogenesis and invasion, Cancer Cell 13(3):206–220, 2008. Factor Rev 14(2):85–89, 2003.
54. Sawanobori Y, Ueha S, Kurachi M, et al.: Chemokine-mediated 76. Hawiger D, Wan YY, Eynon EE, Flavell RA: The transcription
rapid turnover of myeloid-derived suppressor cells in tumor-bear- cofactor Hopx is required for regulatory T cell function in den-
ing mice, Blood 111(12):5457–5466, 2008. dritic cell-mediated peripheral T cell unresponsiveness, Nat Immu-
55. Yang L, Huang J, Ren X, et al.: Abrogation of TGF beta signaling nol 11(10):962–968, 2010.
in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that 77. Huehn J, Hamann A: Homing to suppress: address codes for Treg
promote metastasis, Cancer Cell 13(1):23–35, 2008. migration, Trends Immunol 26(12):632–636, 2005.
56. Liu CC, Wang YS, Lin CY, et al.: Transient downregulation of 78. Hoelzinger DB, Smith SE, Mirza N, Dominguez AL, Manrique
monocyte-derived dendritic-cell differentiation, function, and sur- SZ, Lustgarten J: Blockade of CCL1 inhibits T regulatory cell sup-
vival during tumoral progression and regression in an in vivo canine pressive function enhancing tumor immunity without affecting T
model of transmissible venereal tumor, Cancer Immunol Immuno- effector responses, J Immunol 184(12):6833–6842, 2010.
ther 57(4):479–491, 2008. 79. Curiel TJ, Coukos G, Zou L, et al.: Specific recruitment of regu-
57. Zhao L, Lim SY, Gordon-Weeks AN, et al.: Recruitment of a latory T cells in ovarian carcinoma fosters immune privilege and
myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes predicts reduced survival, Nat Med 10(9):942–949, 2004.