Page 268 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 268

CHAPTER 14  Cancer Immunotherapy  247


             160.   Gentschev I, Adelfinger M, Josupeit R, et al.: Preclinical evaluation     179.   Chuang TF, Lee SC, Liao KW, et al.: Electroporation-mediated
               of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma,   IL-12 gene therapy in a transplantable canine cancer model, Int J
               PLoS One 7(5):e37239, 2012.                           Cancer 125(3):698–707, 2009.
  VetBooks.ir    161.   Patil SS, Gentschev I, Adelfinger M, et al.: Virotherapy of canine     180.   Pavlin D, Cemazar M, Cor A,  et al.:  Electrogene therapy with
               tumors with oncolytic vaccinia virus GLV-1h109 expressing an
                                                                     interleukin-12 in canine mast cell tumors, Radiol Oncol 45(1):31–
                                                                     39, 2011.
               anti-VEGF single-chain antibody,  PLoS One 7(10):e47472,
               2012.                                               181.   Cicchelero L, Denies S, Haers H, et al.: Intratumoural interleu-
             162.   Adelfinger M, Bessler S, Frentzen A, et al.: Preclinical testing onco-  kin 12 gene therapy stimulates the immune system and decreases
               lytic vaccinia virus strain GLV-5b451 expressing an anti-VEGF   angiogenesis in dogs with spontaneous cancer,  Vet Comp Oncol
               single-chain antibody for canine cancer therapy, Viruses 7(7):4075–  15(4):1187–1205, 2017.
               4092, 2015.                                         182.   Cicchelero L, Denies S, Vanderperren K, et al.: Immunological,
             163.   Sanchez D, Pelayo R, Medina LA, et al.: Newcastle disease virus:   anti-angiogenic and clinical effects of intratumoral interleukin 12
               potential therapeutic application for human and canine lymphoma,   electrogene therapy combined with metronomic cyclophospha-
               Viruses 8(1), 2015.                                   mide in dogs with spontaneous cancer: a pilot study, Cancer Lett
             164.   Naik  S,  Galyon  GD,  Jenks  NJ,  et  al.:  Comparative  oncology   400:205–218, 2017.
               evaluation of intravenous recombinant oncolytic vesicular stoma-    183.   Marks-Konczalik J, Dubois S, Losi JM, et al.: IL-2-induced activa-
               titis virus therapy in spontaneous canine cancer, Mol Cancer Ther   tion-induced cell death is inhibited in IL-15 transgenic mice, Proc
               17(1):316–326, 2018.                                  Natl Acad Sci U S A 97(21):11445–11450, 2000.
             165.   Andersen BM, Pluhar GE, Seiler CE, et al.: Vaccination for inva-    184.   Zhang X, Sun S, Hwang I,  et al.: Potent and selective stimulation
               sive canine meningioma induces in situ production of antibodies   of memory-phenotype CD8+ T cells in vivo by IL-15, Immunity
               capable of antibody-dependent cell-mediated cytotoxicity, Cancer   8(5):591–599, 1998.
               Res 73(10):2987–2997, 2013.                         185.   Antony PA, Restifo NP: CD4+CD25+ T regulatory cells, immu-
             166.   Gill VL, Bergman PJ, Baer KE,  et al.: Use of imiquimod 5% cream   notherapy of cancer, and interleukin-2, J Immunother 28(2):120–
               (Aldara) in cats with multicentric squamous cell carcinoma in situ:   128, 2005.
               12 cases (2002-2005), Vet Comp Oncol 6(1):55–64, 2008.    186.   Waldmann TA, Lugli E, Roederer M, et al.: Safety (toxicity), phar-
             167.   Fogler WE,  Fidler  IJ:  Comparative  interaction  of  free  and  lipo-  macokinetics, immunogenicity, and impact on elements of the
               some-encapsulated nor-muramyl dipeptide or muramyl tripeptide   normal immune system of recombinant human IL-15 in rhesus
               phosphatidylethanolamine ( H-labelled) with human blood mono-  macaques, Blood 117(18):4787–4795, 2011.
                                  3
               cytes, Int J Immunopharmacol 9(2):141–150, 1987.    187.   Chou PC, Chuang TF, Jan TR, et al.: Effects of immunotherapy
             168.   Siegel JP, Puri RK: Interleukin-2 toxicity, J Clin Oncol 9(4):694–  of IL-6 and IL-15 plasmids on transmissible venereal tumor in
               704, 1991.                                            beagles, Vet Immunol Immunopathol 130(1-2):25–34, 2009.
             169.   Vial  T, Descotes J: Clinical toxicity of interleukin-2,  Drug Saf     188.   Lee  SH, Shin DJ, Kim SK: Generation of recombinant canine
               7(6):417–433, 1992.                                   interleukin-15 and evaluation of its effects on the proliferation and
             170.   Margolin KA, Rayner AA, Hawkins MJ, et al.: Interleukin-2 and   function of canine NK cells, Vet Immunol Immunopathol 165(1-
               lymphokine-activated killer cell therapy of solid tumors: analysis of   2):1–13, 2015.
               toxicity and management guidelines, J Clin Oncol 7(4):486–498,     189.   Streck CJ, Zhang Y, Miyamoto R, et al.: Restriction of neuroblas-
               1989.                                                 toma angiogenesis and growth by interferon-alpha/beta,  Surgery
             171.   Helfand  SC, Soergel SA, MacWilliams PS,  et al.: Clinical and   136(2):183–189, 2004.
               immunological effects of human recombinant interleukin-2 given     190.   Folkman J: Successful treatment of an angiogenic disease, N Engl J
               by repetitive weekly infusion to normal dogs,  Cancer Immunol   Med 320(18):1211–1212, 1989.
               Immunother 39(2):84–92, 1994.                       191.   Coates  A, Rallings M, Hersey P, Swanson C: Phase-II study of
             172.   Funk J, Schmitz G, Failing K, Burkhardt E: Natural killer (NK)   recombinant alpha 2-interferon in advanced malignant melanoma,
               and lymphokine-activated killer (LAK) cell functions from healthy   J Interferon Res 6(1):1–4, 1986.
               dogs and 29 dogs with a variety of spontaneous neoplasms, Cancer     192.   Rosenthal MA, Cox K, Raghavan D, et al.: Phase II clinical
               Immunol Immunother 54(1):87–92, 2005.                 trial of recombinant alpha-2 interferon for biopsy-proven met-
             173.   Khanna C, Anderson PM, Hasz DE,  et al.: Interleukin-2 liposome   astatic or recurrent renal carcinoma, Br J Urol 69(5):491–494,
               inhalation therapy is safe and effective for dogs with spontaneous   1992.
               pulmonary metastases, Cancer 79(7):1409–1421, 1997.    193.   Zeidner  NS, Mathiason-DuBard CK, Hoover EA: Reversal of
             174.   Jourdier TM, Moste C, Bonnet MC, et al.: Local immunotherapy   feline leukemia virus infection by adoptive transfer of activated T
               of spontaneous feline fibrosarcomas using recombinant poxviruses   lymphocytes, interferon alpha, and zidovudine, Semin Vet Med Surg
               expressing interleukin 2 (IL2),  Gene Ther 10(26):2126–2132,   (Small Anim) 10(4):256–266, 1995.
               2003.                                               194.   Penzo C, Ross M, Muirhead R,  et al.: Effect of recombinant feline
             175.   Quintin-Colonna F, Devauchelle P, Fradelizi D, et al.: Gene ther-  interferon-omega alone and in combination with chemotherapeu-
               apy of spontaneous canine melanoma and feline fibrosarcoma by   tic  agents  on  putative  tumour-initiating  cells  and  daughter  cells
               intratumoral administration of histoincompatible cells expressing   derived from canine and feline mammary tumours, Vet Comp Oncol
               human interleukin-2, Gene Ther 3(12):1104–1112        7(4):222–229, 2009.
             176.   Jahnke  A, Hirschberger J, Fischer C, et  al.: Intra-tumoral gene     195.   Whitley EM, Bird AC, Zucker KE, Wolfe LG: Modulation by
               delivery of feIL-2, feIFN-gamma and feGM-CSF using magneto-  canine interferon-gamma of major histocompatibility complex
               fection as a neoadjuvant treatment option for feline fibrosarcomas:   and tumor-associated antigen expression in canine mammary
               a phase-I study, J Vet Med A Physiol Pathol Clin Med 54(10):599–  tumor and melanoma cell lines, Anticancer Res 15(3):923–929,
               606, 2007.                                            1995.
             177.   Cutrera J, Torrero M, Shiomitsu K,  et al.: Intratumoral bleomycin     196.   Hsiao YW, Liao KW, Chung TF,  et al.: Interactions of host IL-6
               and IL-12 electrochemogenetherapy for treating head and neck   and IFN-gamma and cancer-derived TGF-beta1 on MHC mol-
               tumors in dogs, Methods Mol Biol 423:319–325, 2008.   ecule expression during tumor spontaneous regression,  Cancer
             178.   Siddiqui F, Li CY, Zhang X, et al.: Characterization of a recom-  Immunol Immunother 57(7):1091–1104, 2008.
               binant  adenovirus  vector  encoding  heat-inducible  feline  inter-    197.   Mito K, Sugiura K, Ueda K, et al.: IFN{gamma} markedly cooper-
               leukin-12 for use in hyperthermia-induced gene-therapy,  Int J   ates with intratumoral dendritic cell vaccine in dog tumor models,
               Hyperthermia 22(2):117–134, 2006.                     Cancer Res 70(18):7093–7101, 2010.
   263   264   265   266   267   268   269   270   271   272   273