Page 304 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 304
CHAPTER 15 Molecular/Targeted Therapy of Cancer 283
434. Osada M, Imaoka S, Funae Y: Apigenin suppresses the expression 455. Bagatell R, Beliakoff J, David CL, et al.: Hsp90 inhibitors deplete
of VEGF, an important factor for angiogenesis, in endothelial cells key anti-apoptotic proteins in pediatric solid tumor cells and dem-
via degradation of HIF-1alpha protein, FEBS Lett 575:59–63, onstrate synergistic anticancer activity with cisplatin, Int J Cancer
VetBooks.ir 435. Plescia J, Salz W, Xia F, et al.: Rational design of shepherdin, a 456. Bisht KS, Bradbury CM, Mattson D, et al.: Geldanamycin and
113:179–188, 2005.
2004.
novel anticancer agent, Cancer Cell 7:457–468, 2005.
436. Kamal A, Thao L, Sensintaffar J, et al.: A high-affinity conforma- 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro
and in vivo radiation response of cervical tumor cells via the heat
tion of Hsp90 confers tumour selectivity on Hsp90 inhibitors, shock protein 90-mediated intracellular signaling and cytotoxicity,
Nature 425:407–410, 2003. Cancer Res 63:8984–8995, 2003.
437. Maloney A, Clarke PA, Workman P: Genes and proteins governing 457. Jones DT, Addison E, North JM, et al.: Geldanamycin and herbi-
the cellular sensitivity to HSP90 inhibitors: a mechanistic perspec- mycin A induce apoptotic killing of B chronic lymphocytic leuke-
tive, Curr Cancer Drug Targets 3:331–341, 2003. mia cells and augment the cells’ sensitivity to cytotoxic drugs, Blood
438. Fumo G, Akin C, Metcalfe DD, et al.: 17–Allylamino-17–deme- 103:1855–1861, 2004.
thoxygeldanamycin (17–AAG) is effective in down-regulating 458. Machida H, Matsumoto Y, Shirai M, et al.: Geldanamycin, an
mutated, constitutively activated KIT protein in human mast cells, inhibitor of Hsp90, sensitizes human tumour cells to radiation, Int
Blood 103:1078–1084, 2004. J Radiat Biol 79:973–980, 2003.
439. Downing S, Chien MB, Kass PH, et al.: Prevalence and importance 459. Munster PN, Basso A, Solit D, et al.: Modulation of Hsp90 func-
of internal tandem duplications in exons 11 and 12 of c-kit in mast tion by ansamycins sensitizes breast cancer cells to chemotherapy-
cell tumors of dogs, Am J Vet Res 63:1718–1723, 2002. induced apoptosis in an RB- and schedule-dependent manner, Clin
440. Maulik G, Kijima T, Ma PC, et al.: Modulation of the c-Met/hepa- Cancer Res 7:2228–2236, 2001.
tocyte growth factor pathway in small cell lung cancer, Clin Cancer 460. Solit DB, Basso AD, Olshen AB, et al.: Inhibition of heat shock
Res 8:620–627, 2002. protein 90 function down-regulates Akt kinase and sensitizes
441. Liao AT, McMahon M, London CA: Characterization, expression tumors to Taxol, Cancer Res 63:2139–2144, 2003.
and function of c-Met in canine spontaneous cancers, Vet Comp 461. Vasilevskaya IA, Rakitina TV, O’Dwyer PJ: Geldanamycin and its
Oncol 3:61–72, 2005. 17–allylamino-17–demethoxy analogue antagonize the action of
442. MacEwen EG, Kutzke J, Carew J, et al.: c-Met tyrosine kinase cisplatin in human colon adenocarcinoma cells: differential cas-
receptor expression and function in human and canine osteosar- pase activation as a basis for interaction, Cancer Res 63:3241–3246,
coma cells, Clin Exp Metastasis 20:421–430, 2003. 2003.
443. Sakagami M, Morrison P, Welch WJ: Benzoquinoid ansamycins 462. Price JT, Quinn JMW, Sims NA, et al.: The heat shock protein 90
(herbimycin A and geldanamycin) interfere with the maturation inhibitor, 17–allylamino-17-demethoxygeldanamycin, enhances
of growth factor receptor tyrosine kinases, Cell Stress Chaperones osteoclast formation and potentiates bone metastasis of a human
4:19–28, 1999. breast cancer cell line, Cancer Res 65:4929–4938, 2005.
444. Katayama R, Huelsmeyer MK, Marr AK, et al.: Imatinib mesyl- 463. Goetz MP, Toft D, Reid J, et al.: Phase I trial of 17–allylamino-
ate inhibits platelet-derived growth factor activity and increases 17-demethoxygeldanamycin in patients with advanced cancer,
chemosensitivity in feline vaccine-associated sarcoma, Cancer Che- J Clin Oncol 23:1078–1087, 2005.
mother Pharmacol 54:25–33, 2004. 464. Grem JL, Morrison G, Guo XD, et al.: Phase I and pharmacologic
445. Levine RA: Overexpression of the sis oncogene in a canine osteosar- study of 17–(allylamino)-17-demethoxygeldanamycin in adult
coma cell line, Vet Pathol 39:411–412, 2002. patients with solid tumors, J Clin Oncol 23:1885–1893, 2005.
446. MacEwen EG, Pastor J, Kutzke J, et al.: IGF-1 receptor contributes 465. Pacey S, Wilson RH, Walton M, et al.: A phase I study of the heat
to the malignant phenotype in human and canine osteosarcoma, shock protein 90 inhibitor alvespimycin (17-DMAG) given intra-
J Cell Biochem 92:77–91, 2004. venously to patients with advanced solid tumors, Clin Cancer Res
447. Serra M, Pastor J, Domenzain C, et al.: Effect of transforming 17:1561–1570, 2011.
growth factor-beta1, insulin-like growth factor-I, and hepatocyte 466. Richardson PG, Chanan-Khan AA, Alsina M, et al.: Tanespimycin
growth factor on proteoglycan production and regulation in canine monotherapy in relapsed multiple myeloma: results of a phase 1
melanoma cell lines, Am J Vet Res 63:1151–1158, 2002. dose-escalation study, Br J Hematol 150:438–445, 2010.
448. Thamm DH, Huelsmeyer MK, Mitzey AM, et al.: RT-PCR-based 467. Ramanathan RK, Egorin MJ, Erlichman C, et al.: Phase I pharma-
tyrosine kinase display profiling of canine melanoma: IGF-1 recep- cokinetic and pharmacodynamic study of 17-dimethylaminoethyl-
tor as a potential therapeutic target, Melanoma Res 20:35–42, 2010. amino-17-demethoxygeldanamycin, an inhibitor of heat-shock
449. Mabjeesh NJ, Post DE, Willard MT, et al.: Geldanamycin induces protein 90, in patients with advanced solid tumors, J Clin Oncol
degradation of hypoxia-inducible factor 1alpha protein via the 28:1520–1526, 2010.
proteosome pathway in prostate cancer cells, Cancer Res 62:2478– 468. Cercek A, Shia J, Gollub M, et al.: Ganetespib, a novel Hsp90
2482, 2002. inhibitor in patients with KRAS mutated and wild type, refractory
450. Isaacs JS, Jung YJ, Mimnaugh EG, et al.: Hsp90 regulates a von metastatic colorectal cancer, Clin Colorectal Cancer 13:207–212,
Hippel Lindau-independent hypoxia-inducible factor-1 alpha-deg- 2014.
radative pathway, J Biol Chem 277:29936–29944, 2002. 469. Oki Y, Younes A, Knickerbocker J, et al.: Experience with HSP90
451. Muller L, Schaupp A, Walerych D, et al.: Hsp90 regulates the activ- inhibitor AUY922 in patients with relapsed or refractory non-
ity of wild type p53 under physiological and elevated temperatures, Hodgkin lymphoma, Haematologica 100:e272–e274, 2015.
J Biol Chem 279:48846–48854, 2004. 470. Johnson ML, Yu HA, Hart EM, et al.: Phase I/II study of HSP90
452. Muller P, Ceskova P, Vojtesek B: Hsp90 is essential for restoring inhibitor AUY922 and erlotinib for EGFR-mutant lung cancer
cellular functions of temperature-sensitive p53 mutant protein but with acquired resistance to epidermal growth factor receptor tyro-
not for stabilization and activation of wild-type p53: implications sine kinase inhibitors, J Clin Oncol 33:1666–1673, 2015.
for cancer therapy, J Biol Chem 280:6682–6691, 2005. 471. Bendell JC, Jones SF, Hart L, et al.: A phase I study of the Hsp90
453. Walerych D, Kudla G, Gutkowska M, et al.: Hsp90 chaperones inhibitor AUY922 plus capecitabine for the treatment of patients
wild-type p53 tumor suppressor protein, J Biol Chem 279:48836– with advanced solid tumors, Cancer Invest 33:477–482, 2015.
48845, 2004. 472. Lin TY, Bear M, Du Z, et al.: The novel HSP90 inhibitor STA-
454. Fortugno P, Beltrami E, Plescia J, et al.: Regulation of survivin func- 9090 exhibits activity against Kit-dependent and -independent
tion by Hsp90, Proc Natl Acad Sci U S A 100:13791–13796, 2003. malignant mast cell tumors, Exp Hematol 36:1266–1277, 2008.