Page 304 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 304

CHAPTER 15  Molecular/Targeted Therapy of Cancer  283


             434.   Osada M, Imaoka S, Funae Y: Apigenin suppresses the expression     455.   Bagatell R, Beliakoff J, David CL, et al.: Hsp90 inhibitors deplete
               of VEGF, an important factor for angiogenesis, in endothelial cells   key anti-apoptotic proteins in pediatric solid tumor cells and dem-
               via degradation of HIF-1alpha protein,  FEBS Lett 575:59–63,   onstrate synergistic anticancer activity with cisplatin, Int J Cancer
  VetBooks.ir    435.   Plescia J, Salz W, Xia F, et al.: Rational design of shepherdin, a     456.   Bisht KS, Bradbury CM, Mattson D, et al.: Geldanamycin and
                                                                     113:179–188, 2005.
               2004.
               novel anticancer agent, Cancer Cell 7:457–468, 2005.
             436.   Kamal A, Thao L, Sensintaffar J, et al.: A high-affinity conforma-  17-allylamino-17-demethoxygeldanamycin potentiate the in vitro
                                                                     and in vivo radiation response of cervical tumor cells via the heat
               tion of Hsp90 confers tumour selectivity on Hsp90 inhibitors,   shock protein 90-mediated intracellular signaling and cytotoxicity,
               Nature 425:407–410, 2003.                             Cancer Res 63:8984–8995, 2003.
             437.   Maloney A, Clarke PA, Workman P: Genes and proteins governing     457.   Jones DT, Addison E, North JM, et al.: Geldanamycin and herbi-
               the cellular sensitivity to HSP90 inhibitors: a mechanistic perspec-  mycin A induce apoptotic killing of B chronic lymphocytic leuke-
               tive, Curr Cancer Drug Targets 3:331–341, 2003.       mia cells and augment the cells’ sensitivity to cytotoxic drugs, Blood
             438.   Fumo G, Akin C, Metcalfe DD, et al.: 17–Allylamino-17–deme-  103:1855–1861, 2004.
               thoxygeldanamycin (17–AAG) is effective in down-regulating     458.   Machida  H,  Matsumoto Y, Shirai M, et  al.: Geldanamycin, an
               mutated, constitutively activated KIT protein in human mast cells,   inhibitor of Hsp90, sensitizes human tumour cells to radiation, Int
               Blood 103:1078–1084, 2004.                            J Radiat Biol 79:973–980, 2003.
             439.   Downing S, Chien MB, Kass PH, et al.: Prevalence and importance     459.   Munster PN, Basso A, Solit D, et al.: Modulation of Hsp90 func-
               of internal tandem duplications in exons 11 and 12 of c-kit in mast   tion by ansamycins sensitizes breast cancer cells to chemotherapy-
               cell tumors of dogs, Am J Vet Res 63:1718–1723, 2002.  induced apoptosis in an RB- and schedule-dependent manner, Clin
             440.   Maulik G, Kijima T, Ma PC, et al.: Modulation of the c-Met/hepa-  Cancer Res 7:2228–2236, 2001.
               tocyte growth factor pathway in small cell lung cancer, Clin Cancer     460.   Solit DB, Basso AD, Olshen AB, et al.: Inhibition of heat shock
               Res 8:620–627, 2002.                                  protein 90 function down-regulates Akt kinase and sensitizes
             441.   Liao AT, McMahon M, London CA: Characterization, expression   tumors to Taxol, Cancer Res 63:2139–2144, 2003.
               and function of c-Met in canine spontaneous cancers, Vet Comp     461.   Vasilevskaya IA, Rakitina TV, O’Dwyer PJ: Geldanamycin and its
               Oncol 3:61–72, 2005.                                  17–allylamino-17–demethoxy analogue antagonize the action of
             442.   MacEwen  EG, Kutzke J, Carew J, et  al.: c-Met tyrosine kinase   cisplatin in human colon adenocarcinoma cells: differential cas-
               receptor expression and function in human and canine osteosar-  pase activation as a basis for interaction, Cancer Res 63:3241–3246,
               coma cells, Clin Exp Metastasis 20:421–430, 2003.     2003.
             443.   Sakagami M, Morrison P, Welch WJ: Benzoquinoid ansamycins     462.   Price JT, Quinn JMW, Sims NA, et al.: The heat shock protein 90
               (herbimycin A and geldanamycin) interfere with the maturation   inhibitor,  17–allylamino-17-demethoxygeldanamycin,  enhances
               of growth factor receptor tyrosine kinases, Cell Stress Chaperones   osteoclast formation and potentiates bone metastasis of a human
               4:19–28, 1999.                                        breast cancer cell line, Cancer Res 65:4929–4938, 2005.
             444.   Katayama R, Huelsmeyer MK, Marr AK, et al.: Imatinib mesyl-    463.   Goetz MP, Toft D, Reid J, et al.: Phase I trial of 17–allylamino-
               ate inhibits platelet-derived growth factor activity and increases   17-demethoxygeldanamycin in patients with advanced cancer,
               chemosensitivity in feline vaccine-associated sarcoma, Cancer Che-  J Clin Oncol 23:1078–1087, 2005.
               mother Pharmacol 54:25–33, 2004.                    464.   Grem JL, Morrison G, Guo XD, et al.: Phase I and pharmacologic
             445.   Levine RA: Overexpression of the sis oncogene in a canine osteosar-  study of 17–(allylamino)-17-demethoxygeldanamycin in adult
               coma cell line, Vet Pathol 39:411–412, 2002.          patients with solid tumors, J Clin Oncol 23:1885–1893, 2005.
             446.   MacEwen EG, Pastor J, Kutzke J, et al.: IGF-1 receptor contributes     465.   Pacey S, Wilson RH, Walton M, et al.: A phase I study of the heat
               to the malignant phenotype in human and canine osteosarcoma,   shock protein 90 inhibitor alvespimycin (17-DMAG) given intra-
               J Cell Biochem 92:77–91, 2004.                        venously to patients with advanced solid tumors, Clin Cancer Res
             447.   Serra  M, Pastor J, Domenzain C, et  al.: Effect of transforming   17:1561–1570, 2011.
               growth factor-beta1, insulin-like growth factor-I, and hepatocyte     466.   Richardson PG, Chanan-Khan AA, Alsina M, et al.: Tanespimycin
               growth factor on proteoglycan production and regulation in canine   monotherapy in relapsed multiple myeloma: results of a phase 1
               melanoma cell lines, Am J Vet Res 63:1151–1158, 2002.  dose-escalation study, Br J Hematol 150:438–445, 2010.
             448.   Thamm DH, Huelsmeyer MK, Mitzey AM, et al.: RT-PCR-based     467.   Ramanathan RK, Egorin MJ, Erlichman C, et al.: Phase I pharma-
               tyrosine kinase display profiling of canine melanoma: IGF-1 recep-  cokinetic and pharmacodynamic study of 17-dimethylaminoethyl-
               tor as a potential therapeutic target, Melanoma Res 20:35–42, 2010.  amino-17-demethoxygeldanamycin, an inhibitor of heat-shock
             449.   Mabjeesh NJ, Post DE, Willard MT, et al.: Geldanamycin induces   protein 90, in patients with advanced solid tumors, J Clin Oncol
               degradation of hypoxia-inducible factor 1alpha protein via the   28:1520–1526, 2010.
               proteosome pathway in prostate cancer cells, Cancer Res 62:2478–    468.   Cercek  A, Shia J, Gollub M, et  al.: Ganetespib, a novel Hsp90
               2482, 2002.                                           inhibitor in patients with KRAS mutated and wild type, refractory
             450.   Isaacs JS, Jung YJ, Mimnaugh EG, et al.: Hsp90 regulates a von   metastatic  colorectal  cancer,  Clin  Colorectal  Cancer  13:207–212,
               Hippel Lindau-independent hypoxia-inducible factor-1 alpha-deg-  2014.
               radative pathway, J Biol Chem 277:29936–29944, 2002.    469.   Oki Y, Younes A, Knickerbocker J, et al.: Experience with HSP90
             451.   Muller L, Schaupp A, Walerych D, et al.: Hsp90 regulates the activ-  inhibitor AUY922 in patients with relapsed or refractory non-
               ity of wild type p53 under physiological and elevated temperatures,   Hodgkin lymphoma, Haematologica 100:e272–e274, 2015.
               J Biol Chem 279:48846–48854, 2004.                  470.   Johnson ML, Yu HA, Hart EM, et al.: Phase I/II study of HSP90
             452.   Muller P, Ceskova P, Vojtesek B: Hsp90 is essential for restoring   inhibitor AUY922 and erlotinib for EGFR-mutant lung cancer
               cellular functions of temperature-sensitive p53 mutant protein but   with acquired resistance to epidermal growth factor receptor tyro-
               not for stabilization and activation of wild-type p53: implications   sine kinase inhibitors, J Clin Oncol 33:1666–1673, 2015.
               for cancer therapy, J Biol Chem 280:6682–6691, 2005.    471.   Bendell JC, Jones SF, Hart L, et al.: A phase I study of the Hsp90
             453.   Walerych D, Kudla G, Gutkowska M, et al.: Hsp90 chaperones   inhibitor AUY922 plus capecitabine for the treatment of patients
               wild-type p53 tumor suppressor protein, J Biol Chem 279:48836–  with advanced solid tumors, Cancer Invest 33:477–482, 2015.
               48845, 2004.                                        472.   Lin TY, Bear M, Du Z, et al.: The novel HSP90 inhibitor STA-
             454.   Fortugno P, Beltrami E, Plescia J, et al.: Regulation of survivin func-  9090  exhibits  activity  against  Kit-dependent  and  -independent
               tion by Hsp90, Proc Natl Acad Sci U S A 100:13791–13796, 2003.  malignant mast cell tumors, Exp Hematol 36:1266–1277, 2008.
   299   300   301   302   303   304   305   306   307   308   309