Page 303 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 303
282 PART III Therapeutic Modalities for the Cancer Patient
393. Wittenburg LA, Ptitsyn AA, Thamm DH: A systems biology 413. Jagannath S, Barlogie B, Berenson J, et al.: A phase 2 study of two
approach to identify molecular pathways altered by HDAC inhibi- doses of bortezomib in relapsed or refractory myeloma, Br J Hae-
tion in osteosarcoma, J Cell Biochem 113:773–783, 2012. matol 127:165–172, 2004.
VetBooks.ir 394. Whittaker SJ, Demierre MF, Kim EJ, et al.: Final results from a 414. Jagannath S, Durie BG, Wolf J, et al.: Bortezomib therapy
multicenter, international, pivotal study of romidepsin in refractory
alone and in combination with dexamethasone for previously
cutaneous T-cell lymphoma, J Clin Oncol 28:4485–4491, 2010.
395. Duvic M, Talpur R, Ni X, et al.: Phase 2 trial of oral vorinostat untreated symptomatic multiple myeloma, Br J Haematol 129:
776–783, 2005.
(suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous 415. Richardson PG, Sonneveld P, Schuster MW, et al.: Bortezomib or
T-cell lymphoma (CTCL), Blood 109:31–39, 2007. high-dose dexamethasone for relapsed multiple myeloma, N Engl J
396. Olsen EA, Kim YH, Kuzel TM, et al.: Phase IIb multicenter trial Med 352:2487–2498, 2005.
of vorinostat in patients with persistent, progressive, or treatment 416. Richardson PG, Barlogie B, Berenson J, et al.: A phase 2 study
refractory cutaneous T-cell lymphoma, J Clin Oncol 25:3109– of bortezomib in relapsed, refractory myeloma, N Engl J Med
3115, 2007. 348:2609–2617, 2003.
397. Munster PN, Thurn KT, Thomas S, et al.: A phase II study of the 417. Robak T, Huang H, Jin J, et al.: Bortezomib-based therapy for
histone deacetylase inhibitor vorinostat combined with tamoxifen newly diagnosed mantle-cell lymphoma, N Engl J Med 372:944–
for the treatment of patients with hormone therapy-resistant breast 953, 2015.
cancer, Br J Cancer 104:1828–1835, 2011. 418. O’Connor OA, Wright J, Moskowitz C, et al.: Phase II clinical
398. Kirschbaum M, Frankel P, Popplewell L, et al.: Phase II study of experience with the novel proteasome inhibitor bortezomib in
vorinostat for treatment of relapsed or refractory indolent non- patients with indolent non-Hodgkin’s lymphoma and mantle cell
Hodgkin’s lymphoma and mantle cell lymphoma, J Clin Oncol lymphoma, J Clin Oncol 23:676–684, 2005.
29:1198–1203, 2011. 419. Goy A, Younes A, McLaughlin P, et al.: Phase II study of protea-
399. Otterson GA, Hodgson L, Pang H, et al.: Phase II study of the some inhibitor bortezomib in relapsed or refractory B-cell non-
histone deacetylase inhibitor Romidepsin in relapsed small cell lung Hodgkin’s lymphoma, J Clin Oncol 23:667–675, 2005.
cancer (Cancer and Leukemia Group B 30304), J Thorac Oncol 420. Cortes J, Thomas D, Koller C, et al.: Phase I study of bortezomib
5:1644–1648, 2010. in refractory or relapsed acute leukemias, Clin Cancer Res 10:3371–
400. Stathis A, Hotte SJ, Chen EX, et al.: Phase I study of decitabine 3376, 2004.
in combination with vorinostat in patients with advanced solid 421. Davis NB, Taber DA, Ansari RH, et al.: Phase II trial of PS-341
tumors and non-Hodgkin’s lymphomas, Clin Cancer Res 17:1582– in patients with renal cell cancer: a University of Chicago phase II
1590, 2011. consortium study, J Clin Oncol 22:115–119, 2004.
401. Kisseberth WC, Murahari S, London CA, et al.: Evaluation of the 422. Maki RG, Kraft AS, Scheu K, et al.: A multicenter Phase II study of
effects of histone deacetylase inhibitors on cells from canine cancer bortezomib in recurrent or metastatic sarcomas, Cancer 103:1431–
cell lines, Am J Vet Res 69:938–945, 2008. 1438, 2005.
402. Murahari S, Jalkanen AL, Kulp SK, et al.: Sensitivity of osteosar- 423. Markovic SN, Geyer SM, Dawkins F, et al.: A phase II study of
coma cells to HDAC inhibitor AR-42 mediated apoptosis, BMC bortezomib in the treatment of metastatic malignant melanoma,
Cancer 17:67, 2017. Cancer 103:2584–2589, 2005.
403. Elshafae SM, Kohart NA, Altstadt LA, et al.: The effect of a histone 424. Shah MH, Young D, Kindler HL, et al.: Phase II study of the pro-
deacetylase inhibitor (AR-42) on canine prostate cancer growth teasome inhibitor bortezomib (PS-341) in patients with metastatic
and metastasis, Prostate 77:776–793, 2017. neuroendocrine tumors, Clin Cancer Res 10:6111–6118, 2004.
404. Blaheta RA, Michaelis M, Driever PH, et al.: Evolving anticancer 425. Rossi UA, Finocchiaro LME, Glikin GC: Bortezomib enhances
drug valproic acid: insights into the mechanism and clinical stud- the antitumor effects of interferon-beta gene transfer on melanoma
ies, Med Res Rev 25:383–397, 2005. cells, Anticancer Agents Med Chem 17:754–761, 2017.
405. Adams J: The development of proteasome inhibitors as anticancer 426. Ito K, Kobayashi M, Kuroki S, et al.: The proteasome inhibitor
drugs, Cancer Cell 5:417–421, 2004. bortezomib inhibits the growth of canine malignant melanoma
406. Rajkumar SV, Richardson PG, Hideshima T, et al.: Proteasome cells in vitro and in vivo, Vet J 198:577–582, 2013.
inhibition as a novel therapeutic target in human cancer, J Clin 427. Gareau A, Rico C, Boerboom D, et al.: In vitro efficacy of a first-
Oncol 23:630–639, 2005. generation valosin-containing protein inhibitor (CB-5083) against
407. Voorhees PM, Dees EC, O’Neil B, et al.: The proteasome as a target canine lymphoma, Vet Comp Oncol, 2018; epub ahead of print.
for cancer therapy, Clin Cancer Res 9:6316–6325, 2003. 428. Nadeau ME, Rico C, Tsoi M, et al.: Pharmacological targeting of
408. Hideshima T, Richardson P, Chauhan D, et al.: The proteasome valosin containing protein (VCP) induces DNA damage and selec-
inhibitor PS-341 inhibits growth, induces apoptosis, and over- tively kills canine lymphoma cells, BMC Cancer 15:479, 2015.
comes drug resistance in human multiple myeloma cells, Cancer 429. Bouchard PR, Juedes MJ, Nix D, et al.: Nonclinical discovery and
Res 61:3071–3076, 2001. development of bortezomib (PS-341, VELCADE), a proteasome
409. Masdehors P, Omura S, Merle-Beral H, et al.: Increased sensitivity inhibitor for the treatment of cancer, Proc 55th Annual Meeting,
of CLL-derived lymphocytes to apoptotic death activation by the Am Coll Vet Pathol, 2004.
proteasome-specific inhibitor lactacystin, Br J Haematol 105:752– 430. Araujo KP, Bonuccelli G, Duarte CN, et al.: Bortezomib (PS-341)
757, 1999. treatment decreases inflammation and partially rescues the expres-
410. Orlowski RZ, Eswara JR, Lafond-Walker A, et al.: Tumor sion of the dystrophin-glycoprotein complex in GRMD dogs, PLoS
growth inhibition induced in a murine model of human One 8:e61367, 2013.
Burkitt’s lymphoma by a proteasome inhibitor, Cancer Res 58: 431. Neckers L: Hsp90 inhibitors as novel cancer chemotherapeutic
4342–4348, 1998. agents, Trends Mol Med 8:S55–61, 2002.
411. Soligo D, Servida F, Delia D, et al.: The apoptogenic response of 432. Isaacs JS, Xu W, Neckers L: Heat shock protein 90 as a molecular
human myeloid leukaemia cell lines and of normal and malignant target for cancer therapeutics, Cancer Cell 3:213–217, 2003.
haematopoietic progenitor cells to the proteasome inhibitor PSI, Br 433. Kurebayashi J, Otsuki T, Kurosumi M, et al.: A radicicol deriva-
J Haematol 113:126–135, 2001. tive, KF58333, inhibits expression of hypoxia-inducible factor-
412. Masdehors P, Merle-Beral H, Maloum K, et al.: Deregulation of 1alpha and vascular endothelial growth factor, angiogenesis and
the ubiquitin system and p53 proteolysis modify the apoptotic growth of human breast cancer xenografts, Jpn J Cancer Res 92:
response in B-CLL lymphocytes, Blood 96:269–274, 2000. 1342–1351, 2001.