Page 303 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 303

282   PART III    Therapeutic Modalities for the Cancer Patient


           393.   Wittenburg  LA, Ptitsyn AA, Thamm DH: A systems biology     413.   Jagannath S, Barlogie B, Berenson J, et al.: A phase 2 study of two
              approach to identify molecular pathways altered by HDAC inhibi-  doses of bortezomib in relapsed or refractory myeloma, Br J Hae-
              tion in osteosarcoma, J Cell Biochem 113:773–783, 2012.  matol 127:165–172, 2004.
  VetBooks.ir    394.   Whittaker SJ, Demierre MF, Kim EJ, et al.: Final results from a     414.   Jagannath  S, Durie BG, Wolf  J, et  al.: Bortezomib therapy
              multicenter, international, pivotal study of romidepsin in refractory
                                                                    alone and in combination with dexamethasone for previously
              cutaneous T-cell lymphoma, J Clin Oncol 28:4485–4491, 2010.
           395.   Duvic M, Talpur R, Ni X, et al.: Phase 2 trial of oral vorinostat   untreated symptomatic multiple myeloma,  Br J Haematol 129:
                                                                    776–783, 2005.
              (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous     415.   Richardson PG, Sonneveld P, Schuster MW, et al.: Bortezomib or
              T-cell lymphoma (CTCL), Blood 109:31–39, 2007.        high-dose dexamethasone for relapsed multiple myeloma, N Engl J
           396.   Olsen EA, Kim YH, Kuzel TM, et al.: Phase IIb multicenter trial   Med 352:2487–2498, 2005.
              of vorinostat in patients with persistent, progressive, or treatment     416.   Richardson PG, Barlogie B, Berenson J, et al.: A phase 2 study
              refractory cutaneous  T-cell lymphoma,  J Clin Oncol 25:3109–  of bortezomib in relapsed, refractory myeloma,  N Engl J Med
              3115, 2007.                                           348:2609–2617, 2003.
           397.   Munster PN, Thurn KT, Thomas S, et al.: A phase II study of the     417.   Robak T, Huang H, Jin J, et  al.: Bortezomib-based therapy for
              histone deacetylase inhibitor vorinostat combined with tamoxifen   newly diagnosed mantle-cell lymphoma, N Engl J Med 372:944–
              for the treatment of patients with hormone therapy-resistant breast   953, 2015.
              cancer, Br J Cancer 104:1828–1835, 2011.           418.   O’Connor OA, Wright J, Moskowitz C, et al.: Phase II clinical
           398.   Kirschbaum M, Frankel P, Popplewell L, et al.: Phase II study of   experience  with the  novel proteasome  inhibitor  bortezomib  in
              vorinostat for treatment of relapsed or refractory indolent non-  patients with indolent non-Hodgkin’s lymphoma and mantle cell
              Hodgkin’s lymphoma and mantle cell lymphoma,  J Clin Oncol   lymphoma, J Clin Oncol 23:676–684, 2005.
              29:1198–1203, 2011.                                419.   Goy A, Younes A, McLaughlin P, et al.: Phase II study of protea-
           399.   Otterson GA, Hodgson L, Pang H, et al.: Phase II study of the   some inhibitor bortezomib in relapsed or refractory B-cell non-
              histone deacetylase inhibitor Romidepsin in relapsed small cell lung   Hodgkin’s lymphoma, J Clin Oncol 23:667–675, 2005.
              cancer (Cancer and Leukemia Group B 30304),  J Thorac Oncol     420.   Cortes J, Thomas D, Koller C, et al.: Phase I study of bortezomib
              5:1644–1648, 2010.                                    in refractory or relapsed acute leukemias, Clin Cancer Res 10:3371–
           400.   Stathis A, Hotte SJ, Chen EX, et al.: Phase I study of decitabine   3376, 2004.
              in combination with vorinostat in patients with advanced solid     421.   Davis NB, Taber DA, Ansari RH, et al.: Phase II trial of PS-341
              tumors and non-Hodgkin’s lymphomas, Clin Cancer Res 17:1582–  in patients with renal cell cancer: a University of Chicago phase II
              1590, 2011.                                           consortium study, J Clin Oncol 22:115–119, 2004.
           401.   Kisseberth WC, Murahari S, London CA, et al.: Evaluation of the     422.   Maki RG, Kraft AS, Scheu K, et al.: A multicenter Phase II study of
              effects of histone deacetylase inhibitors on cells from canine cancer   bortezomib in recurrent or metastatic sarcomas, Cancer 103:1431–
              cell lines, Am J Vet Res 69:938–945, 2008.            1438, 2005.
           402.   Murahari S, Jalkanen AL, Kulp SK, et al.: Sensitivity of osteosar-    423.   Markovic SN, Geyer SM, Dawkins F, et al.: A phase II study of
              coma cells to HDAC inhibitor AR-42 mediated apoptosis, BMC   bortezomib in the treatment of metastatic malignant melanoma,
              Cancer 17:67, 2017.                                   Cancer 103:2584–2589, 2005.
           403.   Elshafae SM, Kohart NA, Altstadt LA, et al.: The effect of a histone     424.   Shah MH, Young D, Kindler HL, et al.: Phase II study of the pro-
              deacetylase inhibitor (AR-42) on canine prostate cancer growth   teasome inhibitor bortezomib (PS-341) in patients with metastatic
              and metastasis, Prostate 77:776–793, 2017.            neuroendocrine tumors, Clin Cancer Res 10:6111–6118, 2004.
           404.   Blaheta RA, Michaelis M, Driever PH, et al.: Evolving anticancer     425.   Rossi  UA, Finocchiaro LME, Glikin GC: Bortezomib enhances
              drug valproic acid: insights into the mechanism and clinical stud-  the antitumor effects of interferon-beta gene transfer on melanoma
              ies, Med Res Rev 25:383–397, 2005.                    cells, Anticancer Agents Med Chem 17:754–761, 2017.
           405.   Adams J: The development of proteasome inhibitors as anticancer     426.   Ito K, Kobayashi M, Kuroki S, et al.: The proteasome inhibitor
              drugs, Cancer Cell 5:417–421, 2004.                   bortezomib inhibits the growth of canine malignant melanoma
           406.   Rajkumar SV, Richardson PG, Hideshima T, et al.: Proteasome   cells in vitro and in vivo, Vet J 198:577–582, 2013.
              inhibition as a novel therapeutic target in human cancer, J Clin     427.   Gareau A, Rico C, Boerboom D, et al.: In vitro efficacy of a first-
              Oncol 23:630–639, 2005.                               generation valosin-containing protein inhibitor (CB-5083) against
           407.   Voorhees PM, Dees EC, O’Neil B, et al.: The proteasome as a target   canine lymphoma, Vet Comp Oncol, 2018; epub ahead of print.
              for cancer therapy, Clin Cancer Res 9:6316–6325, 2003.    428.   Nadeau ME, Rico C, Tsoi M, et al.: Pharmacological targeting of
           408.   Hideshima T, Richardson P, Chauhan D, et al.: The proteasome   valosin containing protein (VCP) induces DNA damage and selec-
              inhibitor PS-341 inhibits growth, induces apoptosis, and over-  tively kills canine lymphoma cells, BMC Cancer 15:479, 2015.
              comes drug resistance in human multiple myeloma cells, Cancer     429.   Bouchard PR, Juedes MJ, Nix D, et al.: Nonclinical discovery and
              Res 61:3071–3076, 2001.                               development of bortezomib (PS-341, VELCADE), a proteasome
           409.   Masdehors P, Omura S, Merle-Beral H, et al.: Increased sensitivity   inhibitor for the treatment of cancer, Proc 55th Annual Meeting,
              of CLL-derived lymphocytes to apoptotic death activation by the   Am Coll Vet Pathol, 2004.
              proteasome-specific inhibitor lactacystin, Br J Haematol 105:752–    430.   Araujo KP, Bonuccelli G, Duarte CN, et al.: Bortezomib (PS-341)
              757, 1999.                                            treatment decreases inflammation and partially rescues the expres-
           410.   Orlowski  RZ, Eswara JR, Lafond-Walker A,  et  al.: Tumor   sion of the dystrophin-glycoprotein complex in GRMD dogs, PLoS
              growth inhibition induced in a murine model of human   One 8:e61367, 2013.
              Burkitt’s lymphoma by a proteasome inhibitor,  Cancer Res 58:     431.   Neckers  L: Hsp90 inhibitors as novel cancer chemotherapeutic
              4342–4348, 1998.                                      agents, Trends Mol Med 8:S55–61, 2002.
           411.   Soligo D, Servida F, Delia D, et al.: The apoptogenic response of     432.   Isaacs JS, Xu W, Neckers L: Heat shock protein 90 as a molecular
              human myeloid leukaemia cell lines and of normal and malignant   target for cancer therapeutics, Cancer Cell 3:213–217, 2003.
              haematopoietic progenitor cells to the proteasome inhibitor PSI, Br     433.   Kurebayashi J, Otsuki T, Kurosumi M, et al.: A radicicol deriva-
              J Haematol 113:126–135, 2001.                         tive,  KF58333,  inhibits  expression  of  hypoxia-inducible factor-
           412.   Masdehors P, Merle-Beral H, Maloum K, et al.: Deregulation of   1alpha and vascular endothelial growth factor, angiogenesis and
              the  ubiquitin  system  and  p53  proteolysis  modify  the apoptotic   growth of human breast cancer xenografts, Jpn J Cancer Res 92:
              response in B-CLL lymphocytes, Blood 96:269–274, 2000.  1342–1351, 2001.
   298   299   300   301   302   303   304   305   306   307   308