Page 299 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 299

278   PART III    Therapeutic Modalities for the Cancer Patient


           236.   Hirte H, Vergote IB, Jeffrey JR, et al.: A phase III randomized trial     255.   Shaked Y, Kerbel RS: Antiangiogenic strategies on defense: on the
              of BAY 12-9566 (tanomastat) as maintenance therapy in patients   possibility of blocking rebounds by the tumor vasculature after che-
              with advanced ovarian cancer responsive to primary surgery and   motherapy, Cancer Res 67:7055–7058, 2007.
  VetBooks.ir  paclitaxel/platinum containing chemotherapy: a National Cancer     256.   Bertolini F, Paul S, Mancuso P, et al.: Maximum tolerable dose
                                                                    and low-dose metronomic chemotherapy have opposite effects on
              Institute of Canada Clinical Trials Group Study,  Gynecol Oncol
              102:300–308, 2006.
           237.   Moore MJ, Hamm J, Dancey J, et al.: Comparison of gemcitabine   the mobilization and viability of circulating endothelial progenitor
                                                                    cells, Cancer Res 63:4342–4346, 2003.
              versus  the matrix  metalloproteinase inhibitor  BAY  12-9566 in     257.   Daenen LG, Shaked Y, Man S, et al.: Low-dose metronomic cyclo-
              patients with advanced or metastatic adenocarcinoma of the pan-  phosphamide combined with vascular disrupting therapy induces
              creas: a phase III trial of the National Cancer Institute of Canada   potent antitumor activity in preclinical human tumor xenograft
              Clinical Trials Group, J Clin Oncol 21:3296–3302, 2003.  models, Mol Cancer Ther 8:2872–2881, 2009.
           238.   Moore AS, Dernell WS, Ogilvie GK, et al.: Doxorubicin and BAY     258.   Shaked Y, Emmenegger U, Man S, et al.: Optimal biologic dose of
              12-9566 for the treatment of osteosarcoma in dogs: a randomized,   metronomic chemotherapy regimens is associated with maximum
              double-blind, placebo-controlled study, J Vet Intern Med 21:783–  antiangiogenic activity, Blood 106:3058–3061, 2005.
              790, 2007.                                         259.   Toh B, Abastado JP: Myeloid cells: prime drivers of tumor progres-
           239.   Mohammed SI, Khan KN, Sellers RS, et al.: Expression of cyclo-  sion, Oncoimmunology 1:1360–1367, 2012.
              oxygenase-1 and 2 in naturally-occurring canine cancer, Prostaglan-    260.   Umansky  V, Sevko A:  Tumor microenvironment and
              dins Leukot Essent Fatty Acids 70:479–483, 2004.      myeloid-derived suppressor cells,  Cancer Microenviron 6:
           240.   Knapp DW, Richardson RC, Chan TC, et al.: Piroxicam therapy   169–177, 2013.
              in 34 dogs with transitional cell carcinoma of the urinary bladder,     261.   Finn OJ: Immuno-oncology: understanding the function and dys-
              J Vet Intern Med 8:273–278, 1994.                     function of the immune system in cancer,  Ann Oncol 23(Suppl
           241.   Knapp DW, Richardson RC, Bottoms GD, et al.: Phase I trial of   8):viii6–9, 2012.
              piroxicam in 62 dogs bearing naturally occurring tumors, Cancer     262.   Penel  N, Adenis A, Bocci G: Cyclophosphamide-based metro-
              Chemother Pharmacol 29:214–218, 1992.                 nomic chemotherapy: after 10 years of experience, where do we
           242.   Mohammed SI, Bennett PF, Craig BA, et al.: Effects of the cyclo-  stand and where are we going? Crit Rev Oncol Hematol 82:40–50,
              oxygenase inhibitor, piroxicam, on tumor response, apoptosis, and   2012.
              angiogenesis in a canine model of human invasive urinary bladder     263.   Ghiringhelli F, Menard C, Puig PE, et al.: Metronomic cyclophos-
              cancer, Cancer Res 62:356–358, 2002.                  phamide regimen selectively depletes CD4+CD25+ regulatory T
           243.   Mohammed SI, Craig BA, Mutsaers AJ, et al.: Effects of the cyclo-  cells and restores T and NK effector functions in end stage cancer
              oxygenase inhibitor, piroxicam, in combination with chemother-  patients, Cancer Immunol Immunother 56:641–648, 2007.
              apy on tumor response, apoptosis, and angiogenesis in a canine     264.   Kerbel RS, Shaked Y: The potential clinical promise of ‘multimo-
              model of human invasive urinary bladder cancer, Mol Cancer Ther   dality’ metronomic chemotherapy revealed by preclinical studies of
              2:183–188, 2003.                                      metastatic disease, Cancer Lett 400:293–304, 2017.
           244.   Suvannasankha A, Fausel C, Juliar BE, et al.: Final report of toxic-    265.   Salem  ML, Al-Khami AA, El-Nagaar SA, et  al.: Kinetics of
              ity and efficacy of a phase II study of oral cyclophosphamide, tha-  rebounding of lymphoid and myeloid cells in mouse peripheral
              lidomide, and prednisone for patients with relapsed or refractory   blood, spleen and bone marrow after treatment with cyclophospha-
              multiple myeloma: a Hoosier Oncology Group Trial, HEM01-21,   mide, Cell Immunol 276:67–74, 2012.
              Oncologist 12:99–106, 2007.                        266.   Angulo I, de las Heras FG, Garcia-Bustos JF, et al.: Nitric oxide-
           245.   Bray JP, Orbell G, Cave N, et al.: Does thalidomide prolong sur-  producing  CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+)  cells
              vival in dogs with splenic haemangiosarcoma? J Small Anim Pract   in the spleen of cyclophosphamide-treated mice: implications for
              59:85–91, 2018.                                       T-cell  responses  in  immunosuppressed  mice,  Blood  95:212–220,
           246.   Finotello R, Henriques J, Sabattini S, et al.: A retrospective analysis   2000.
              of chemotherapy switch suggests improved outcome in surgically     267.   Noguchi  M, Moriya F, Koga N, et  al.: A randomized phase II
              removed, biologically aggressive canine haemangiosarcoma,  Vet   clinical trial of personalized peptide vaccination with metronomic
              Comp Oncol 15:493–503, 2017.                          low-dose cyclophosphamide in patients with metastatic castration-
           247.   Fidler IJ, Ellis LM: Chemotherapeutic drugs—more really is not   resistant prostate cancer, Cancer Immunol Immunother 65:151–160,
              better, Nat Med 6:500–502, 2000.                      2016.
           248.   Hanahan D, Bergers G, Bergsland E: Less is more, regularly: met-    268.   Burton  JH, Mitchell L, Thamm DH, et  al.: Low-dose cyclo-
              ronomic dosing of cytotoxic drugs can target tumor angiogenesis in   phosphamide selectively decreases regulatory T cells and inhibits
              mice, J Clin Invest 105:1045–1047, 2000.              angiogenesis in dogs with soft tissue sarcoma,  J Vet Intern Med
           249.   Kerbel RS, Kamen BA: The anti-angiogenic basis of metronomic   25:920–926, 2011.
              chemotherapy, Nat Rev Cancer 4:423–436, 2004.      269.   Mitchell  L, Thamm DH, Biller BJ: Clinical and immuno-
           250.   Pasquier E, Kavallaris M, Andre N: Metronomic chemotherapy:   modulatory effects of toceranib combined with low-dose
              new rationale for new directions, Nat Rev Clin Oncol 7:455–465,   cyclophosphamide in dogs with cancer,  J  Vet Intern Med 26:
              2010.                                                 355–362, 2012.
           251.   Drevs J, Fakler J, Eisele S, et al.: Antiangiogenic potency of various     270.   Nars MS, Kaneno R: Immunomodulatory effects of low dose che-
              chemotherapeutic drugs for metronomic chemotherapy, Anticancer   motherapy and perspectives of its combination with immunother-
              Res 24:1759–1763, 2004.                               apy, Int J Cancer 132:2471–2478, 2013.
           252.   Bocci G, Nicolaou KC, Kerbel RS: Protracted low-dose effects on     271.   Shurin  GV, Tourkova  IL, Kaneno R, et  al.: Chemotherapeutic
              human endothelial cell proliferation and survival in  vitro reveal   agents in noncytotoxic concentrations increase antigen presenta-
              a selective antiangiogenic window for various chemotherapeutic   tion by dendritic cells via an IL-12-dependent mechanism, J Immu-
              drugs, Cancer Res 62:6938–6943, 2002.                 nol 183:137–144, 2009.
           253.   Bocci G, Francia G, Man S, et al.: Thrombospondin 1, a mediator     272.   Suzuki E, Kapoor V, Jassar AS, et al.: Gemcitabine selectively elimi-
              of the antiangiogenic effects of low-dose metronomic chemother-  nates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-
              apy, Proc Natl Acad Sci USA 100:12917–12922, 2003.    bearing  animals and  enhances antitumor  immune  activity,  Clin
           254.   Hamano Y, Sugimoto H, Soubasakos MA, et al.: Thrombospon-  Cancer Res 11:6713–6721, 2005.
              din-1 associated with tumor microenvironment contributes to low-    273.   Zhu Y, Liu N, Xiong SD, et al.: CD4+Foxp3+ regulatory T-cell
              dose cyclophosphamide-mediated endothelial cell apoptosis and   impairment by paclitaxel is independent of toll-like receptor 4,
              tumor growth suppression, Cancer Res 64:1570–1574, 2004.  Scand J Immunol 73:301–308, 2011.
   294   295   296   297   298   299   300   301   302   303   304