Page 294 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 294
CHAPTER 15 Molecular/Targeted Therapy of Cancer 273
8. Lachmann RH: Herpes simplex virus-based vectors, Int J Exp 34. Fire AZ: Gene silencing by double-stranded RNA, Cell Death Dif-
Pathol 85:177–190, 2004. ferentiation 14:1998–2012, 2007.
9. Buning H, Braun-Falco M, Hallek M: Progress in the use of 35. Bora RS, Gupta D, Mukkur TK, et al.: RNA interference thera-
VetBooks.ir adeno-associated viral vectors for gene therapy, Cells Tissues Organs peutics for cancer: challenges and opportunities, Mol Med Rep 6:
9–15, 2012.
177:139–150, 2004.
10. Mah C, Byrne BJ, Flotte TR: Virus-based gene delivery systems,
Clin Pharmacokinet 41:901–911, 2002. 36. Tabernero J, Shapiro GI, LoRusso PM, et al.: First-in-humans
trial of an RNA interference therapeutic targeting VEGF and
11. Dornburg R: The history and principles of retroviral vectors, Front KSP in cancer patients with liver involvement, Cancer Discov 3:
Biosci 8:D818–D835, 2003. 406–417, 2013.
12. Culver KW, Ram Z, Wallbridge S, et al.: In vivo gene transfer with 37. Blackwood L, O’Shaughnessy PJ, Reid SJ, et al.: E. coli nitrore-
retroviral vector-producer cells for treatment of experimental brain ductase/CB1954: in vitro studies into a potential system for feline
tumors, Science 256:1550–1552, 1992. cancer gene therapy? Vet J 161:269–279, 2001.
13. Hu YL, Fu YH, Tabata Y, et al.: Mesenchymal stem cells: a prom- 38. Gholami A: Suicide gene therapy: a special focus on progress and
ising targeted-delivery vehicle in cancer gene therapy, J Control concerns about cancer treatment, Trends Pharmaceut Sci 3:221–
Release 147:154–162, 2010. 236, 2017.
14. Basel MT, Shrestha TB, Bossmann SH, et al.: Cells as delivery 39. Cihova M, Altanerova V, Altaner C: Stem cell based cancer gene
vehicles for cancer therapeutics, Ther Deliv 5:555–567, 2014. therapy, Mol Pharma 8:1480–1487, 2011.
15. Muta M, Matsumoto G, Hiruma K, et al.: Study of cancer gene 40. Le Blanc K: Immunomodulatory effects of fetal and adult mesen-
therapy using IL-12-secreting endothelial progenitor cells in a rat chymal stem cells, Cytotherapy 5:485–489, 2003.
solid tumor model, Oncol Rep 10, 2003. 1765–176. 41. Koppula PR, Chelluri LK, Polisetti N, et al.: Histocompatibility
16. Pereboeva L, Komarova S, Mikheeva G, et al.: Approaches to uti- testing of cultivated human bone marrow stromal cells—a prom-
lize mesenchymal progenitor cells as cellular vehicles, Stem Cells ising step towards pre-clinical screening for allogeneic stem cell
21:389–404, 2003. therapy, Cell Immunol 259:61–66, 2009.
17. Ramamoorth M, Narvekar A: Non-viral vectors in gene therapy- an 42. Griffin MD, Ritter T, Mahon BP: Immunological aspects of allo-
overview, J Clin Diagn Res 9:GE01–GE06, 2015. geneic mesenchymal stem cell therapies, Hum Gene Ther 21:1641–
18. Hardee CL, Arévalo-Soliz LR, Hornstein BD, et al.: Advances 1655, 2010.
in non-viral DNA vectors for gene therapy, Genes (Basel) 8: 43. Lasek W, Basak G, Switaj T, et al.: Complete tumour regressions
E65, 2017. induced by vaccination with IL-12 gene-transduced tumour cells
19. Shim G, Kim D, Le QV, et al.: Nonviral delivery systems for can- in combination with IL-15 in a melanoma model in mice, Cancer
cer gene therapy: strategies and challenges, Curr Gene Ther 18: Immunol Immunother 53:363–372, 2004.
3–20, 2018. 44. Yamazaki M, Straus FH, Messina M, et al.: Adenovirus-mediated
20. Tranchant I, Thompson B, Nicolazzi C, et al.: Physicochemical tumor-specific combined gene therapy using herpes simplex virus
optimisation of plasmid delivery by cationic lipids, J Gene Med thymidine/ganciclovir system and murine interleukin-12 induces
6:S24–S35, 2004. effective antitumor activity against medullary thyroid carcinoma,
21. Hirko A, Tang FX, Hughes JA: Cationic lipid vectors for plasmid Cancer Gene Ther 11:8–15, 2004.
DNA delivery, Curr Med Chem 10:1185–1193, 2003. 45. Nagayama Y, Nakao K, Mizuguchi H, et al.: Enhanced antitumor
22. Yang N, Sun WH: Gene and non-viral approaches to cancer gene effect of combined replicative adenovirus and nonreplicative ade-
therapy, Nat Med 1:481–483, 1995. novirus expressing interleukin-12 in an immunocompetent mouse
23. Keller ET, Burkholder JK, Shi F, et al.: In-vivo particle mediated model, Gene Ther 10:1400–1403, 2003.
cytokine gene transfer into canine oral mucosa and epidermis, Can- 46. Liu YQ, Huang H, Saxena A, et al.: Intratumoral co-injection of
cer Gene Ther 3:186–191, 1996. two adenoviral vectors expressing functional interleukin-18 and
24. Dachs GU, Dougherty GJ, Stratford IJ, et al.: Targeting gene ther- inducible protein-10, respectively, synergizes to facilitate regression
apy to cancer, Oncol Res 9:313–325, 1997. of established tumors, Cancer Gene Ther 9:533–542, 2002.
25. Glasgow JN, Everts M, Curiel DT: Transductional targeting 47. Goto H, Osaki T, Nishino K, et al.: Construction and analy-
of adenovirus vectors for gene therapy, Cancer Gene Ther 13: sis of new vector systems with improved interleukin-18 secre-
830–844, 2006. tion in a xenogeneic human tumor model, J Immunother 25:
26. Blackwood L, Onions DE, Argyle DJ: The feline thyroglobu- S35–S41, 2002.
lin promoter: towards targeted gene therapy of hyperthyroidism, 48. Quintin-Colonna F, Devauchelle P, Fradelizi D, et al.: Gene ther-
Domest Anim Endocrinol 185–201, 2001. apy of spontaneous canine melanoma and feline fibrosarcoma by
27. Vile RG, Hart IR: In-vitro and in-vivo targeting of gene expression intratumoral administration of histoincompatible cells expressing
to melanoma cells, Cancer Res 53:962–967, 1993. human interleukin-2, Gene Ther 3:1104–1112, 1996.
28. Pang LY, Argyle DJ: Cancer stem cells and telomerase as potential 49. Glikin GC, Finocchiaro LM: Clinical trials of immunogene ther-
biomarkers in veterinary oncology, Vet J 185:15–22, 2010. apy for spontaneous tumors in companion animals, Sci World J
29. Pang L, Argyle DJ: Using naturally occurring tumours in dogs and 2014:718520, 2014.
cats to study telomerase and cancer stem cell biology, Biochim Bio- 50. Davila ML, Riviere I, Wang X, et al.: Efficacy and toxicity manage-
phys Acta 1792:380–391, 2009. ment of 19-28z CAR T cell therapy in B cell acute lymphoblastic
30. Fullerton NE, Boyd M, Mairs RJ, et al.: Combining a targeted leukemia, Sci Transl Med 6(224ra25), 2014.
radiotherapy and gene therapy approach for adenocarcinoma of 51. Maude SL, Frey N, Shaw PA, et al.: Chimeric antigen receptor T
prostate, Prostate Cancer Prostatic Dis 7:355–363, 2004. cells for sustained remissions in leukemia, N Engl J Med 371:1507–
31. Edelman J, Edelman J, Nemunaitis J: Adenoviral p53 gene therapy 1517, 2014.
in squamous cell cancer of the head and neck region, Curr Opin 52. Lee DW, Kochenderfer JN, Stetter-Stevenson M, et al.: T cells
Mol Ther 5:611–617, 2003. expressing CD19 chimeric antigen receptors for acute lymphoblas-
32. Bortolanza S, Hernandez-Alcoceba R, Kramer G, et al.: Evaluation tic leukaemia in children and young adults: a phase 1 dose-escala-
of the tumor specificity of a conditionally replicative adenovirus tion trial, Lancet 385:517–528, 2015.
controlled by a modified human core telomerase promoter, Mol 53. Panjwan MK, Smith JB, Schutsky K, et al.: Feasibility and safety of
Ther 9:S375, 2004. RNA-transfected CD20-specific chimeric antigen receptor T cells
33. Cox DBT, Platt RJ, Zhang F: Therapeutic genome editing: pros- in dogs with spontaneous B cell lymphoma, Mol Ther 24:1602–
pects and challenges, Nat Med 21:121–131, 2015. 1614, 2016.