Page 297 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 297
276 PART III Therapeutic Modalities for the Cancer Patient
148. Zhang J, Yang PL, Gray NS: Targeting cancer with small molecule 173. London CA, Hannah AL, Zadovoskaya R, et al.: Phase I dose-esca-
kinase inhibitors, Nat Rev Cancer 9:28–39, 2009. lating study of SU11654, a small molecule receptor tyrosine kinase
149. de Kogel CE, Schellens JH: Imatinib, Oncologist 12:1390–1394, inhibitor, in dogs with spontaneous malignancies, Clin Cancer Res
VetBooks.ir 150. Mauro MJ, Druker BJ: STI571: targeting BCR-ABL as therapy for 174. London CA, Malpas PB, Wood-Follis SL, et al.: Multi-center, pla-
9:2755–2768, 2003.
2007.
CML, Oncologist 6:233–238, 2001.
phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the
151. Kantarjian H, Sawyers C, Hochhaus A, et al.: Hematologic and cebo-controlled, double-blind, randomized study of oral toceranib
cytogenetic responses to imatinib mesylate in chronic myelogenous treatment of dogs with recurrent (either local or distant) mast cell
leukemia, N Engl J Med 346:645–652, 2002. tumor following surgical excision, Clin Cancer Res 15:3856–3865,
152. Beham-Schmid C, Apfelbeck U, Sill H, et al.: Treatment of chronic 2009.
myelogenous leukemia with the tyrosine kinase inhibitor STI571 175. London C, Mathie T, Stingle N, et al.: Preliminary evidence for
results in marked regression of bone marrow fibrosis, Blood 99:381– biologic activity of toceranib phosphate (Palladia) in solid tumours,
383, 2002. Vet Comp Oncol 10:194–205, 2012.
153. Druker BJ, Talpaz M, Resta DJ, et al.: Efficacy and safety of a spe- 176. Hahn KA, Ogilvie G, Rusk T, et al.: Masitinib is safe and effec-
cific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid tive for the treatment of canine mast cell tumors, J Vet Intern Med
leukemia, N Engl J Med 344:1031–1037, 2001. 22:1301–1309, 2008.
154. Druker BJ, Sawyers CL, Kantarjian H, et al.: Activity of a specific 177. Hahn KA, Legendre AM, Shaw NG, et al.: Evaluation of 12-
inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of and 24-month survival rates after treatment with masitinib
chronic myeloid leukemia and acute lymphoblastic leukemia with in dogs with nonresectable mast cell tumors, Am J Vet Res 71:
the Philadelphia chromosome, N Engl J Med 344:1038–1042, 2001. 1354–1361, 2010.
155. Sawyers CL: Rational therapeutic intervention in cancer: kinases as 178. Isotani M, Ishida N, Tominaga M, et al.: Effect of tyrosine kinase
drug targets, Curr Opin Genet Dev 12:111–115, 2002. inhibition by imatinib mesylate on mast cell tumors in dogs, J Vet
156. Weisberg E, Griffin JD: Resistance to imatinib (Glivec): update on Intern Med 22:985–988, 2008.
clinical mechanisms, Drug Resist Updat 6:231–238, 2003. 179. Marconato L, Bettini G, Giacoboni C, et al.: Clinico-
157. Nardi V, Azam M, Daley GQ: Mechanisms and implications of pathological features and outcome for dogs with mast cell
imatinib resistance mutations in BCR-ABL, Curr Opin Hematol tumors and bone marrow involvement, J Vet Intern Med 22:
11:35–43, 2004. 1001–1007, 2008.
158. Duffaud F, Blay JY: Gastrointestinal stromal tumors: biology and 180. Yamada O, Kobayashi M, Sugisaki O, et al.: Imatinib elicited a
treatment, Oncology 65:187–197, 2003. favorable response in a dog with a mast cell tumor carrying a c-kit
159. Heinrich MC, Rubin BP, Longley BJ, et al.: Biology and genetic c.1523A>T mutation via suppression of constitutive KIT activa-
aspects of gastrointestinal stromal tumors: KIT activation and cyto- tion, Vet Immunol Immunopathol 142:101–106, 2011.
genetic alterations, Hum Pathol 33:484–495, 2002. 181. Isotani M, Tamura K, Yagihara H, et al.: Identification of a c-kit
160. Miettinen M, Sarlomo-Rikala M, Lasota J: Gastrointestinal stromal exon 8 internal tandem duplication in a feline mast cell tumor case
tumors: recent advances in understanding of their biology, Hum and its favorable response to the tyrosine kinase inhibitor imatinib
Pathol 30:1213–1220, 1999. mesylate, Vet Immunol Immunopathol 114:168–172, 2006.
161. Miettinen M, Sarlomo-Rikala M, Lasota J: Gastrointestinal stromal 182. Isotani M, Yamada O, Lachowicz JL, et al.: Mutations in the fifth
tumours, Ann Chir Gynaecol 87:278–281, 1998. immunoglobulin-like domain of kit are common and potentially
162. Heinrich MC, Corless CL, Duensing A, et al.: PDGFRA activat- sensitive to imatinib mesylate in feline mast cell tumours, Br J Hae-
ing mutations in gastrointestinal stromal tumors, Science 299:708– matol 148:144–153, 2009.
710, 2003. 183. Gardner HL, Rippy SB, Bear MD, et al.: Phase I/II evaluation
163. Peled N, Yoshida K, Wynes MW, et al.: Predictive and prognostic of RV1001, a novel PI3Kδ inhibitor, in spontaneous canine lym-
markers for epidermal growth factor receptor inhibitor therapy in phoma, PLoS One 13:e0195357, 2018.
non-small cell lung cancer, Ther Adv Med Oncol 1:137–144, 2009. 184. London CA, Bernabe LF, Barnard S, et al.: Preclinical evaluation of
164. Singh M, Jadhav HR: Targeting non-small cell lung cancer with the novel, orally bioavailable Selective Inhibitor of Nuclear Export
small-molecule EGFR tyrosine kinase inhibitors, Drug Discov (SINE) KPT-335 in spontaneous canine cancer: results of a phase I
Today 23:745–753, 2018. study, PLoS One 9:e87585, 2014.
165. Bang YJ: The potential for crizotinib in non-small cell lung cancer: 185. Sadowski AR, Gardner HL, Borgatti A, et al.: Phase II study of
a perspective review, Ther Adv Med Oncol 3:279–291, 2011. the oral selective inhibitor of nuclear export (SINE) KPT-335 (ver-
166. Shaw AT, Yeap BY, Solomon BJ, et al.: Effect of crizotinib on over- dinexor) in dogs with lymphoma, BMC Vet Res 14:250, 2018.
all survival in patients with advanced non-small-cell lung cancer 186. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other
harbouring ALK gene rearrangement: a retrospective analysis, Lan- disease, Nat Med 1:27–31, 1995.
cet Oncol 12:1004–1012, 2011. 187. Folkman J: Tumor angiogenesis: therapeutic implications, N Engl J
167. Chapman PB, Hauschild A, Robert C, et al.: Improved survival Med 285:1182–1186, 1971.
with vemurafenib in melanoma with BRAF V600E mutation, 188. Hanahan D, Weinberg RA: Hallmarks of cancer: the next genera-
N Engl J Med 364:2507–2516, 2011. tion, Cell 144:646–674, 2011.
168. Markman B, Dienstmann R, Tabernero J: Targeting the PI3K/Akt/ 189. Folkman J: Endogenous angiogenesis inhibitors, APMIS 112:496–
mTOR pathway—beyond rapalogs, Oncotarget 1:530–543, 2010. 507, 2004.
169. Vilar E, Perez-Garcia J, Tabernero J: Pushing the envelope in the 190. Ferrara N, Kerbel RS: Angiogenesis as a therapeutic target, Nature
mTOR pathway: the second generation of inhibitors, Mol Cancer 438:967–974, 2005.
Ther 10:395–403, 2011. 191. Patel-Hett S, D’Amore PA: Signal transduction in vasculogenesis
170. Pal Singh S, Dammeijer F, Hendriks RW: Role of Bruton’s tyrosine and developmental angiogenesis, Int J Dev Biol 55:353–363, 2011.
kinase in B cells and malignancies, Mol Cancer 17:57, 2018. 192. Stewart KS, Kleinerman ES: Tumor vessel development and expan-
171. Horwitz SM, Koch R, Porcu P, et al.: Activity of the PI3K- sion in Ewing’s sarcoma: a review of the vasculogenesis process
delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical and clinical trials with vascular-targeting agents, Sarcoma 165837,
models of T-cell lymphoma, Blood 131:888–898, 2018. 2011.
172. Papaetis GS, Syrigos KN: Sunitinib: a multitargeted receptor tyro- 193. Asahara T, Murohara T, Sullivan A, et al.: Isolation of puta-
sine kinase inhibitor in the era of molecular cancer therapies, Bio- tive progenitor endothelial cells for angiogenesis, Science 275:
Drugs 23:377–389, 2009. 964–967, 1997.