Page 297 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 297

276   PART III    Therapeutic Modalities for the Cancer Patient


           148.   Zhang J, Yang PL, Gray NS: Targeting cancer with small molecule     173.   London CA, Hannah AL, Zadovoskaya R, et al.: Phase I dose-esca-
              kinase inhibitors, Nat Rev Cancer 9:28–39, 2009.      lating study of SU11654, a small molecule receptor tyrosine kinase
           149.   de Kogel CE, Schellens JH: Imatinib, Oncologist 12:1390–1394,   inhibitor, in dogs with spontaneous malignancies, Clin Cancer Res
  VetBooks.ir    150.   Mauro MJ, Druker BJ: STI571: targeting BCR-ABL as therapy for     174.   London CA, Malpas PB, Wood-Follis SL, et al.: Multi-center, pla-
                                                                    9:2755–2768, 2003.
              2007.
              CML, Oncologist 6:233–238, 2001.
                                                                    phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the
           151.   Kantarjian H, Sawyers C, Hochhaus A, et al.: Hematologic and   cebo-controlled, double-blind, randomized study of oral toceranib
              cytogenetic responses to imatinib mesylate in chronic myelogenous   treatment of dogs with recurrent (either local or distant) mast cell
              leukemia, N Engl J Med 346:645–652, 2002.             tumor following surgical excision, Clin Cancer Res 15:3856–3865,
           152.   Beham-Schmid C, Apfelbeck U, Sill H, et al.: Treatment of chronic   2009.
              myelogenous leukemia with the tyrosine kinase inhibitor STI571     175.   London C, Mathie T, Stingle N, et al.: Preliminary evidence for
              results in marked regression of bone marrow fibrosis, Blood 99:381–  biologic activity of toceranib phosphate (Palladia) in solid tumours,
              383, 2002.                                            Vet Comp Oncol 10:194–205, 2012.
           153.   Druker BJ, Talpaz M, Resta DJ, et al.: Efficacy and safety of a spe-    176.   Hahn KA, Ogilvie G, Rusk T, et al.: Masitinib is safe and effec-
              cific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid   tive for the treatment of canine mast cell tumors, J Vet Intern Med
              leukemia, N Engl J Med 344:1031–1037, 2001.           22:1301–1309, 2008.
           154.   Druker BJ, Sawyers CL, Kantarjian H, et al.: Activity of a specific     177.   Hahn  KA, Legendre AM, Shaw NG, et  al.: Evaluation of 12-
              inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of   and 24-month survival rates after treatment with masitinib
              chronic myeloid leukemia and acute lymphoblastic leukemia with   in dogs with nonresectable mast cell tumors,  Am J Vet Res 71:
              the Philadelphia chromosome, N Engl J Med 344:1038–1042, 2001.  1354–1361, 2010.
           155.   Sawyers CL: Rational therapeutic intervention in cancer: kinases as     178.   Isotani M, Ishida N, Tominaga M, et al.: Effect of tyrosine kinase
              drug targets, Curr Opin Genet Dev 12:111–115, 2002.   inhibition by imatinib mesylate on mast cell tumors in dogs, J Vet
           156.   Weisberg E, Griffin JD: Resistance to imatinib (Glivec): update on   Intern Med 22:985–988, 2008.
              clinical mechanisms, Drug Resist Updat 6:231–238, 2003.    179.   Marconato  L, Bettini G, Giacoboni C, et  al.: Clinico-
           157.   Nardi V, Azam M, Daley GQ: Mechanisms and implications of   pathological features and outcome for dogs with mast cell
              imatinib resistance mutations in BCR-ABL, Curr Opin Hematol   tumors and bone marrow involvement,  J Vet Intern Med 22:
              11:35–43, 2004.                                       1001–1007, 2008.
           158.   Duffaud F, Blay JY: Gastrointestinal stromal tumors: biology and     180.   Yamada O, Kobayashi M, Sugisaki O, et al.: Imatinib elicited a
              treatment, Oncology 65:187–197, 2003.                 favorable response in a dog with a mast cell tumor carrying a c-kit
           159.   Heinrich MC, Rubin BP, Longley BJ, et al.: Biology and genetic   c.1523A>T mutation via suppression of constitutive KIT activa-
              aspects of gastrointestinal stromal tumors: KIT activation and cyto-  tion, Vet Immunol Immunopathol 142:101–106, 2011.
              genetic alterations, Hum Pathol 33:484–495, 2002.    181.   Isotani M, Tamura K, Yagihara H, et al.: Identification of a c-kit
           160.   Miettinen M, Sarlomo-Rikala M, Lasota J: Gastrointestinal stromal   exon 8 internal tandem duplication in a feline mast cell tumor case
              tumors: recent advances in understanding of their biology, Hum   and its favorable response to the tyrosine kinase inhibitor imatinib
              Pathol 30:1213–1220, 1999.                            mesylate, Vet Immunol Immunopathol 114:168–172, 2006.
           161.   Miettinen M, Sarlomo-Rikala M, Lasota J: Gastrointestinal stromal     182.   Isotani M, Yamada O, Lachowicz JL, et al.: Mutations in the fifth
              tumours, Ann Chir Gynaecol 87:278–281, 1998.          immunoglobulin-like domain of kit are common and potentially
           162.   Heinrich MC, Corless CL, Duensing A, et al.: PDGFRA activat-  sensitive to imatinib mesylate in feline mast cell tumours, Br J Hae-
              ing mutations in gastrointestinal stromal tumors, Science 299:708–  matol 148:144–153, 2009.
              710, 2003.                                         183.   Gardner  HL, Rippy SB, Bear MD, et  al.: Phase I/II evaluation
           163.   Peled N, Yoshida K, Wynes MW, et al.: Predictive and prognostic   of RV1001, a novel PI3Kδ inhibitor, in spontaneous canine lym-
              markers for epidermal growth factor receptor inhibitor therapy in   phoma, PLoS One 13:e0195357, 2018.
              non-small cell lung cancer, Ther Adv Med Oncol 1:137–144, 2009.    184.   London CA, Bernabe LF, Barnard S, et al.: Preclinical evaluation of
           164.   Singh M, Jadhav HR: Targeting non-small cell lung cancer with   the novel, orally bioavailable Selective Inhibitor of Nuclear Export
              small-molecule EGFR tyrosine kinase inhibitors,  Drug Discov   (SINE) KPT-335 in spontaneous canine cancer: results of a phase I
              Today 23:745–753, 2018.                               study, PLoS One 9:e87585, 2014.
           165.   Bang YJ: The potential for crizotinib in non-small cell lung cancer:     185.   Sadowski AR, Gardner HL, Borgatti A, et al.: Phase II study of
              a perspective review, Ther Adv Med Oncol 3:279–291, 2011.  the oral selective inhibitor of nuclear export (SINE) KPT-335 (ver-
           166.   Shaw AT, Yeap BY, Solomon BJ, et al.: Effect of crizotinib on over-  dinexor) in dogs with lymphoma, BMC Vet Res 14:250, 2018.
              all survival in patients with advanced non-small-cell lung cancer     186.   Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other
              harbouring ALK gene rearrangement: a retrospective analysis, Lan-  disease, Nat Med 1:27–31, 1995.
              cet Oncol 12:1004–1012, 2011.                      187.   Folkman J: Tumor angiogenesis: therapeutic implications, N Engl J
           167.   Chapman PB, Hauschild A, Robert C, et al.: Improved survival   Med 285:1182–1186, 1971.
              with vemurafenib in melanoma with BRAF  V600E mutation,     188.   Hanahan D, Weinberg RA: Hallmarks of cancer: the next genera-
              N Engl J Med 364:2507–2516, 2011.                     tion, Cell 144:646–674, 2011.
           168.   Markman B, Dienstmann R, Tabernero J: Targeting the PI3K/Akt/    189.   Folkman J: Endogenous angiogenesis inhibitors, APMIS 112:496–
              mTOR pathway—beyond rapalogs, Oncotarget 1:530–543, 2010.  507, 2004.
           169.   Vilar E, Perez-Garcia J, Tabernero J: Pushing the envelope in the     190.   Ferrara N, Kerbel RS: Angiogenesis as a therapeutic target, Nature
              mTOR pathway: the second generation of inhibitors, Mol Cancer   438:967–974, 2005.
              Ther 10:395–403, 2011.                             191.   Patel-Hett S, D’Amore PA: Signal transduction in vasculogenesis
           170.   Pal Singh S, Dammeijer F, Hendriks RW: Role of Bruton’s tyrosine   and developmental angiogenesis, Int J Dev Biol 55:353–363, 2011.
              kinase in B cells and malignancies, Mol Cancer 17:57, 2018.    192.   Stewart KS, Kleinerman ES: Tumor vessel development and expan-
           171.   Horwitz  SM, Koch R, Porcu P, et  al.: Activity of the PI3K-  sion  in Ewing’s sarcoma:  a  review  of the  vasculogenesis  process
              delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical   and clinical trials with vascular-targeting agents, Sarcoma 165837,
              models of T-cell lymphoma, Blood 131:888–898, 2018.   2011.
           172.   Papaetis GS, Syrigos KN: Sunitinib: a multitargeted receptor tyro-    193.   Asahara  T,  Murohara  T, Sullivan  A, et  al.:  Isolation of puta-
              sine kinase inhibitor in the era of molecular cancer therapies, Bio-  tive progenitor endothelial cells for angiogenesis,  Science 275:
              Drugs 23:377–389, 2009.                               964–967, 1997.
   292   293   294   295   296   297   298   299   300   301   302