Page 295 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 295

274   PART III    Therapeutic Modalities for the Cancer Patient


          54.   Carpinteiro A, Peinert S, Ostertag W, et al.: Genetic protection of    78.   Ma PC, Maulik G, Christensen J, et al.: c-Met: structure, func-
              repopulating hematopoietic cells with an improved MDR1-retro-  tions and potential for therapeutic inhibition, Cancer Metastasis Rev
              virus allows administration of intensified chemotherapy following   22:309–325, 2003.
  VetBooks.ir   55.   Schiedlmeier B, Schilz AJ, Kuhlcke K, et al: Multidrug resistance    79.   Thurston  G, Gale NW:  Vascular endothelial growth factor and
              stem cell transplantation in mice, Int J Cancer 98:785–792, 2002.
                                                                    other signaling pathways in developmental and pathologic angio-
              1 gene transfer can confer chemoprotection to human peripheral
                                                                    genesis, Int J Hematol 80:7–20, 2004.
              blood progenitor cells engrafted in immunodeficient mice, Hum    80.   Eskens FA: Angiogenesis inhibitors in clinical development; where
              Gene Ther 13:233–242, 2002.                           are we now and where are we going? Br J Cancer 90:1–7, 2004.
          56.   Fairbairn LJ, Rafferty JA, Lashford LS: Engineering drug resistance    81.   Cherrington JM, Strawn LM, Shawver LK: New paradigms for the
              in human cells, Bone Marrow Transplant 25:S110–S113, 2000.  treatment of cancer: the role of anti- angiogenesis agents, Adv Can-
          57.   Jiang  F, Zhou L, Wei  C, et  al.: Slug inhibition increases radio-  cer Res 79:1–38, 2000.
              sensitivity of oral squamous cell carcinoma cells by upregulating    82.   McCarty  MF,  Liu W, Fan F, et  al.: Promises and pitfalls of
              PUMA, Int J Oncol 49:709–719, 2016.                   anti-angiogenic  therapy  in  clinical  trials,  Trends  Mol  Med 9:
          58.   Capodanno Y, Buishand FO, Pang LY, et al.: Notch pathway inhi-  53–58, 2003.
              bition targets chemoresistant insulinoma cancer stem cells, Endocr    83.   Thurston  G: Role of Angiopoietins and  Tie receptor tyrosine
              Relat Cancer 25:131–144, 2018.                        kinases in angiogenesis and lymphangiogenesis, Cell Tissue Res 314:
          59.   Pang LY, Saunders L, Argyle DJ: Epidermal growth factor recep-  61–68, 2003.
              tor activity is elevated in glioma cancer stem cells and is required    84.   Blume-Jensen P, Hunter T: Oncogenic kinase signalling, Nature
              to maintain chemotherapy and radiation resistance,  Oncotarget   411:355–365, 2001.
              8:72494–72512, 2017.                              85.   Johnson GL, Lapadat R: Mitogen-activated protein kinase path-
          60.   Chiocca  EA, Abbed KM, Tatter  S, et  al.: A phase I open-label,   ways mediated by ERK, JNK, and p38 protein kinases,  Science
              dose-escalation, multi-institutional trial of injection with an E1B-  298:1911–1912, 2002.
              attenuated adenovirus, ONYX-015, into the peritumoral region    86.   Downward J: Targeting RAS signalling pathways in cancer therapy,
              of recurrent malignant gliomas, in the adjuvant setting, Mol Ther   Nat Rev Cancer 3:11–22, 2003.
              10:958–966, 2004.                                 87.   Davies H, Bignell GR, Cox C, et al.: Mutations of the BRAF gene
          61.   Post DE, Fulci G, Chiocca EA, et al.: Replicative oncolytic herpes   in human cancer, Nature 417:949–954, 2002.
              simplex viruses in combination cancer therapies, Curr Gene Ther    88.   Kumar  R, Angelini  S, Snellman  E, et  al.:  BRAF mutations  are
              4:41–51, 2004.                                        common somatic events in melanocytic nevi,  J Invest Dermatol
          62.   Shah AC, Benos D, Gillespie GY, et al.: Oncolytic viruses: clini-  122:342–348, 2004.
              cal applications as vectors for the treatment of malignant gliomas,    89.   Mercer  KE, Pritchard CA: Raf proteins and cancer: B-Raf is
              J Neurooncol 65:203–226, 2003.                        identified as a mutational target,  Biochim Biophys Acta 1653:
          63.   Dirven CMF, van Beusechem VW, Lamfers MLM, et al.: Onco-  25–40, 2003.
              lytic adenoviruses for treatment of brain tumours, Exp Opin Biol    90.   Decker B, Parker HG, Dhawan D, et al.: Homologous mutation
              Ther 2:943–952, 2002.                                 to human BRAF V600E is common in naturally occurring canine
          64.   Russell SJ, Peng K-W: Oncolytic virotherapy: a contest between   bladder cancer—evidence for a relevant model system and urine-
              apples and oranges, Mol Ther 25:1107–1116, 2017.      based diagnostic test, Mol Cancer Res 13:993–1002, 2015.
          65.   Lawler SE, Speranza M-C, Cho C-F, et al.: Oncolytic viruses and    91.   Fresno Vara JA, Casado E, de Castro J, et al.: PI3K/Akt signalling
              cancer treatment: a review, JAMA Oncol 3:841–849, 2017.  pathway and cancer, Cancer Treat Rev 30:193–204, 2004.
          66.   Conry  RM, Westbrook  B, McKee S, et  al.:  Talimogene laher-   92.   Franke TF, Hornik CP, Segev L, et al.: PI3K/Akt and apoptosis:
              parepvec: first in class oncolytic virotherapy, Hum Vaccin Immuno-  size matters, Oncogene 22:8983–8998, 2003.
              ther 14:839–846, 2018.                            93.   Mitsiades  CS, Mitsiades N, Koutsilieris M: The Akt pathway:
          67.   Hwang CC, Igase M, Sakurai M, et al.: Oncolytic reovirus therapy:   molecular targets for anti-cancer drug development, Curr Cancer
              pilot study in dogs with spontaneously occurring  tumours,  Vet   Drug Targets 4:235–256, 2004.
              Comp Oncol 16:229–238, 2018.                      94.   Markman B, Atzori F, Perez-Garcia J, et al.: Status of PI3K inhibi-
          68.   Naik  S,  Galyon  GD,  Jenks NJ,  et  al.:  Comparative  oncology   tion and biomarker development in cancer therapeutics, Ann Oncol
              evaluation of intravenous recombinant oncolytic vesicular stoma-  21:683–691, 2010.
              titis virus therapy in spontaneous canine cancer, Mol Cancer Ther    95.   Simpson L, Parsons R: PTEN: life as a tumor suppressor, Exp Cell
              17:316–326, 2018.                                     Res 264:29–41, 2001.
          69.   Hemminki A, Kanerva A, Kremer EJ, et al.: A canine condition-   96.   Weng LP, Smith WM, Dahia PL, et al.: PTEN suppresses breast
              ally replicating adenovirus for evaluating oncolytic virotherapy in a   cancer cell growth by phosphatase activity-dependent G1 arrest fol-
              syngeneic animal model, Mol Ther 7:163–173, 2003.     lowed by cell death, Cancer Res 59:5808–5814, 1999.
          70.   Manning G, Whyte DB, Martinez R, et al.: The protein kinase    97.   Kanae Y, Endoh D, Yokota  H, et  al.: Expression of the PTEN
              complement of the human genome, Science 298:1912–1934, 2002.  tumor suppressor gene in malignant mammary gland tumors of
          71.   Lemmon MA, Schlessinger J: Cell signaling by receptor tyrosine   dogs, Am J Vet Res 67:127–133, 2006.
              kinases, Cell 141:1117–1134, 2010.                98.   Koenig A, Bianco SR, Fosmire S, et al.: Expression and significance
          72.   Madhusudan S, Ganesan TS: Tyrosine kinase inhibitors in cancer   of p53, Rb, p21/waf-1, p16/ink-4a, and PTEN tumor suppressors
              therapy, Clin Biochem 37:618–635, 2004.               in canine melanoma, Vet Pathol 39:458–472, 2002.
          73.   Zwick E, Bange J, Ullrich A: Receptor tyrosine kinases as targets for    99.   Levine RA, Forest T, Smith C: Tumor suppressor PTEN is mutated
              anticancer drugs, Trends Mol Med 8:17–23, 2002.       in canine osteosarcoma cell lines and tumors, Vet Pathol 39:372–
          74.   Barreca A, Lasorsa E, Riera L, et al.: Anaplastic lymphoma kinase in   378, 2002.
              human cancer, J Mol Endocrinol 47:R11–R23, 2011.    100.   Swanton C: Cell-cycle targeted therapies, Lancet Oncol 5:27–36,
          75.   Fletcher JA: Role of KIT and platelet-derived growth factor recep-  2004.
              tors as oncoproteins, Semin Oncol 31:4–11, 2004.    101.   Ortega S, Malumbres M, Barbacid M: Cyclin D-dependent kinases,
          76.   Laskin JJ, Sandler AB: Epidermal growth factor receptor: a promis-  INK4 inhibitors and cancer,  Biochim Biophys Acta 1602:73–87,
              ing target in solid tumours, Cancer Treat Rev 30:1–17, 2004.  2002.
          77.   Ma PC, Jagadeeswaran R, Jagadeesh S, et al.: Functional expres-    102.   Malumbres M, Barbacid M: To cycle or not to cycle: a critical deci-
              sion and mutations of c-Met and its therapeutic inhibition with   sion in cancer, Nat Rev Cancer 1:222–231, 2001.
              SU11274 and small interfering RNA in non-small cell lung cancer,     103.   Iwata H. Clinical development of CDK4/6 inhibitor for breast can-
              Cancer Res 65:1479–1488, 2005.                        cer, Breast Cancer 2018.
   290   291   292   293   294   295   296   297   298   299   300