Page 295 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 295
274 PART III Therapeutic Modalities for the Cancer Patient
54. Carpinteiro A, Peinert S, Ostertag W, et al.: Genetic protection of 78. Ma PC, Maulik G, Christensen J, et al.: c-Met: structure, func-
repopulating hematopoietic cells with an improved MDR1-retro- tions and potential for therapeutic inhibition, Cancer Metastasis Rev
virus allows administration of intensified chemotherapy following 22:309–325, 2003.
VetBooks.ir 55. Schiedlmeier B, Schilz AJ, Kuhlcke K, et al: Multidrug resistance 79. Thurston G, Gale NW: Vascular endothelial growth factor and
stem cell transplantation in mice, Int J Cancer 98:785–792, 2002.
other signaling pathways in developmental and pathologic angio-
1 gene transfer can confer chemoprotection to human peripheral
genesis, Int J Hematol 80:7–20, 2004.
blood progenitor cells engrafted in immunodeficient mice, Hum 80. Eskens FA: Angiogenesis inhibitors in clinical development; where
Gene Ther 13:233–242, 2002. are we now and where are we going? Br J Cancer 90:1–7, 2004.
56. Fairbairn LJ, Rafferty JA, Lashford LS: Engineering drug resistance 81. Cherrington JM, Strawn LM, Shawver LK: New paradigms for the
in human cells, Bone Marrow Transplant 25:S110–S113, 2000. treatment of cancer: the role of anti- angiogenesis agents, Adv Can-
57. Jiang F, Zhou L, Wei C, et al.: Slug inhibition increases radio- cer Res 79:1–38, 2000.
sensitivity of oral squamous cell carcinoma cells by upregulating 82. McCarty MF, Liu W, Fan F, et al.: Promises and pitfalls of
PUMA, Int J Oncol 49:709–719, 2016. anti-angiogenic therapy in clinical trials, Trends Mol Med 9:
58. Capodanno Y, Buishand FO, Pang LY, et al.: Notch pathway inhi- 53–58, 2003.
bition targets chemoresistant insulinoma cancer stem cells, Endocr 83. Thurston G: Role of Angiopoietins and Tie receptor tyrosine
Relat Cancer 25:131–144, 2018. kinases in angiogenesis and lymphangiogenesis, Cell Tissue Res 314:
59. Pang LY, Saunders L, Argyle DJ: Epidermal growth factor recep- 61–68, 2003.
tor activity is elevated in glioma cancer stem cells and is required 84. Blume-Jensen P, Hunter T: Oncogenic kinase signalling, Nature
to maintain chemotherapy and radiation resistance, Oncotarget 411:355–365, 2001.
8:72494–72512, 2017. 85. Johnson GL, Lapadat R: Mitogen-activated protein kinase path-
60. Chiocca EA, Abbed KM, Tatter S, et al.: A phase I open-label, ways mediated by ERK, JNK, and p38 protein kinases, Science
dose-escalation, multi-institutional trial of injection with an E1B- 298:1911–1912, 2002.
attenuated adenovirus, ONYX-015, into the peritumoral region 86. Downward J: Targeting RAS signalling pathways in cancer therapy,
of recurrent malignant gliomas, in the adjuvant setting, Mol Ther Nat Rev Cancer 3:11–22, 2003.
10:958–966, 2004. 87. Davies H, Bignell GR, Cox C, et al.: Mutations of the BRAF gene
61. Post DE, Fulci G, Chiocca EA, et al.: Replicative oncolytic herpes in human cancer, Nature 417:949–954, 2002.
simplex viruses in combination cancer therapies, Curr Gene Ther 88. Kumar R, Angelini S, Snellman E, et al.: BRAF mutations are
4:41–51, 2004. common somatic events in melanocytic nevi, J Invest Dermatol
62. Shah AC, Benos D, Gillespie GY, et al.: Oncolytic viruses: clini- 122:342–348, 2004.
cal applications as vectors for the treatment of malignant gliomas, 89. Mercer KE, Pritchard CA: Raf proteins and cancer: B-Raf is
J Neurooncol 65:203–226, 2003. identified as a mutational target, Biochim Biophys Acta 1653:
63. Dirven CMF, van Beusechem VW, Lamfers MLM, et al.: Onco- 25–40, 2003.
lytic adenoviruses for treatment of brain tumours, Exp Opin Biol 90. Decker B, Parker HG, Dhawan D, et al.: Homologous mutation
Ther 2:943–952, 2002. to human BRAF V600E is common in naturally occurring canine
64. Russell SJ, Peng K-W: Oncolytic virotherapy: a contest between bladder cancer—evidence for a relevant model system and urine-
apples and oranges, Mol Ther 25:1107–1116, 2017. based diagnostic test, Mol Cancer Res 13:993–1002, 2015.
65. Lawler SE, Speranza M-C, Cho C-F, et al.: Oncolytic viruses and 91. Fresno Vara JA, Casado E, de Castro J, et al.: PI3K/Akt signalling
cancer treatment: a review, JAMA Oncol 3:841–849, 2017. pathway and cancer, Cancer Treat Rev 30:193–204, 2004.
66. Conry RM, Westbrook B, McKee S, et al.: Talimogene laher- 92. Franke TF, Hornik CP, Segev L, et al.: PI3K/Akt and apoptosis:
parepvec: first in class oncolytic virotherapy, Hum Vaccin Immuno- size matters, Oncogene 22:8983–8998, 2003.
ther 14:839–846, 2018. 93. Mitsiades CS, Mitsiades N, Koutsilieris M: The Akt pathway:
67. Hwang CC, Igase M, Sakurai M, et al.: Oncolytic reovirus therapy: molecular targets for anti-cancer drug development, Curr Cancer
pilot study in dogs with spontaneously occurring tumours, Vet Drug Targets 4:235–256, 2004.
Comp Oncol 16:229–238, 2018. 94. Markman B, Atzori F, Perez-Garcia J, et al.: Status of PI3K inhibi-
68. Naik S, Galyon GD, Jenks NJ, et al.: Comparative oncology tion and biomarker development in cancer therapeutics, Ann Oncol
evaluation of intravenous recombinant oncolytic vesicular stoma- 21:683–691, 2010.
titis virus therapy in spontaneous canine cancer, Mol Cancer Ther 95. Simpson L, Parsons R: PTEN: life as a tumor suppressor, Exp Cell
17:316–326, 2018. Res 264:29–41, 2001.
69. Hemminki A, Kanerva A, Kremer EJ, et al.: A canine condition- 96. Weng LP, Smith WM, Dahia PL, et al.: PTEN suppresses breast
ally replicating adenovirus for evaluating oncolytic virotherapy in a cancer cell growth by phosphatase activity-dependent G1 arrest fol-
syngeneic animal model, Mol Ther 7:163–173, 2003. lowed by cell death, Cancer Res 59:5808–5814, 1999.
70. Manning G, Whyte DB, Martinez R, et al.: The protein kinase 97. Kanae Y, Endoh D, Yokota H, et al.: Expression of the PTEN
complement of the human genome, Science 298:1912–1934, 2002. tumor suppressor gene in malignant mammary gland tumors of
71. Lemmon MA, Schlessinger J: Cell signaling by receptor tyrosine dogs, Am J Vet Res 67:127–133, 2006.
kinases, Cell 141:1117–1134, 2010. 98. Koenig A, Bianco SR, Fosmire S, et al.: Expression and significance
72. Madhusudan S, Ganesan TS: Tyrosine kinase inhibitors in cancer of p53, Rb, p21/waf-1, p16/ink-4a, and PTEN tumor suppressors
therapy, Clin Biochem 37:618–635, 2004. in canine melanoma, Vet Pathol 39:458–472, 2002.
73. Zwick E, Bange J, Ullrich A: Receptor tyrosine kinases as targets for 99. Levine RA, Forest T, Smith C: Tumor suppressor PTEN is mutated
anticancer drugs, Trends Mol Med 8:17–23, 2002. in canine osteosarcoma cell lines and tumors, Vet Pathol 39:372–
74. Barreca A, Lasorsa E, Riera L, et al.: Anaplastic lymphoma kinase in 378, 2002.
human cancer, J Mol Endocrinol 47:R11–R23, 2011. 100. Swanton C: Cell-cycle targeted therapies, Lancet Oncol 5:27–36,
75. Fletcher JA: Role of KIT and platelet-derived growth factor recep- 2004.
tors as oncoproteins, Semin Oncol 31:4–11, 2004. 101. Ortega S, Malumbres M, Barbacid M: Cyclin D-dependent kinases,
76. Laskin JJ, Sandler AB: Epidermal growth factor receptor: a promis- INK4 inhibitors and cancer, Biochim Biophys Acta 1602:73–87,
ing target in solid tumours, Cancer Treat Rev 30:1–17, 2004. 2002.
77. Ma PC, Jagadeeswaran R, Jagadeesh S, et al.: Functional expres- 102. Malumbres M, Barbacid M: To cycle or not to cycle: a critical deci-
sion and mutations of c-Met and its therapeutic inhibition with sion in cancer, Nat Rev Cancer 1:222–231, 2001.
SU11274 and small interfering RNA in non-small cell lung cancer, 103. Iwata H. Clinical development of CDK4/6 inhibitor for breast can-
Cancer Res 65:1479–1488, 2005. cer, Breast Cancer 2018.