Page 298 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 298
CHAPTER 15 Molecular/Targeted Therapy of Cancer 277
194. Purhonen S, Palm J, Rossi D, et al.: Bone marrow-derived circu- 217. Hahn KA, Ogilvie G, Rusk T, et al.: Masitinib is safe and effec-
lating endothelial precursors do not contribute to vascular endothe- tive for the treatment of canine mast cell tumors, J Vet Intern Med
lium and are not needed for tumor growth, Proc Natl Acad Sci U S A 22:1301–1309, 2008.
VetBooks.ir 195. Shaked Y, Ciarrocchi A, Franco M, et al.: Therapy-induced acute 218. Pietras K, Hanahan D: A multitargeted, metronomic, and max-
105:6620–6625, 2008.
imum-tolerated dose “chemo-switch” regimen is antiangiogenic,
recruitment of circulating endothelial progenitor cells to tumors,
Science 313:1785–1787, 2006. producing objective responses and survival benefit in a mouse
model of cancer, J Clin Oncol 23:939–952, 2005.
196. Kerbel RS, Benezra R, Lyden DC, et al.: Endothelial progenitor 219. Mentlein R, Forstreuter F, Mehdorn HM, et al.: Functional signifi-
cells are cellular hubs essential for neoangiogenesis of certain aggres- cance of vascular endothelial growth factor receptor expression on
sive adenocarcinomas and metastatic transition but not adenomas, human glioma cells, J Neurooncol 67:9–18, 2004.
Proc Natl Acad Sci USA 105:E54, 2008. 220. Jackson MW, Roberts JS, Heckford SE, et al.: A potential autocrine
197. Dome B, Hendrix MJ, Paku S, et al.: Alternative vascularization role for vascular endothelial growth factor in prostate cancer, Can-
mechanisms in cancer: pathology and therapeutic implications, Am cer Res 62:854–859, 2002.
J Pathol 170:1–15, 2007. 221. Kerbel RS, Viloria-Petit A, Klement G, et al.: ‘“Accidental” anti-
198. Hendrix MJ, Seftor EA, Hess AR, et al.: Vasculogenic mimicry angiogenic drugs: anti-oncogene directed signal transduction
and tumour-cell plasticity: lessons from melanoma, Nat Rev Cancer inhibitors and conventional chemotherapeutic agents as examples,
3:411–421, 2003. Eur J Cancer 36:1248–1257, 2000.
199. Tammela T, Alitalo K: Lymphangiogenesis: molecular mechanisms 222. Lopez-Ocejo O, Viloria-Petit A, Bequet-Romero M, et al.:
and future promise, Cell 140:460–476, 2010. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncop-
200. Adams RH, Alitalo K: Molecular regulation of angiogenesis and rotein activates the vascular endothelial growth factor (VEGF)
lymphangiogenesis, Nat Rev Mol Cell Biol 8:464–478, 2007. gene promoter in a p53 independent manner, Oncogene 19:
201. Holopainen T, Bry M, Alitalo K, et al.: Perspectives on lymphan- 4611–4620, 2000.
giogenesis and angiogenesis in cancer, J Surg Oncol 103:484–488, 223. Ebos JM, Tran J, Master Z, et al.: Imatinib mesylate (STI-571)
2011. reduces Bcr-Abl-mediated vascular endothelial growth factor
202. Potente M, Gerhardt H, Carmeliet P: Basic and therapeutic aspects secretion in chronic myelogenous leukemia, Mol Cancer Res 1:
of angiogenesis, Cell 146:873–887, 2011. 89–95, 2002.
203. Kerbel RS: Tumor angiogenesis, N Engl J Med 358:2039–2049, 224. du Manoir JM, Francia G, Man S, et al.: Strategies for delaying or
2008. treating in vivo acquired resistance to trastuzumab in human breast
204. Kerbel RS: Antiangiogenic therapy: a universal chemosensitization cancer xenografts, Clin Cancer Res 12:904–916, 2006.
strategy for cancer? Science 312:1171–1175, 2006. 225. Viloria-Petit A, Crombet T, Jothy S, et al.: Acquired resistance to
205. Khosravi SP, Fernandez PI: Tumoral angiogenesis: review of the the antitumor effect of epidermal growth factor receptor-blocking
literature, Cancer Invest 26:104–108, 2008. antibodies in vivo: a role for altered tumor angiogenesis, Cancer Res
206. Carmeliet P, Jain RK: Molecular mechanisms and clinical applica- 61:5090–5101, 2001.
tions of angiogenesis, Nature 473:298–307, 2011. 226. O’Reilly MS, Boehm T, Shing Y, et al.: Endostatin: an endog-
207. Motzer RJ, Hoosen S, Bello CL, et al.: Sunitinib malate for the enous inhibitor of angiogenesis and tumor growth, Cell 88:
treatment of solid tumours: a review of current clinical data, Expert 277–285, 1997.
Opin Investig Drugs 15:553–561, 2006. 227. Rusk A, McKeegan E, Haviv F, et al.: Preclinical evaluation of anti-
208. Ivy SP, Wick JY, Kaufman BM: An overview of small-molecule angiogenic thrombospondin-1 peptide mimetics, ABT-526 and
inhibitors of VEGFR signaling, Nat Rev Clin Oncol 6:569–579, ABT-510, in companion dogs with naturally occurring cancers,
2009. Clin Cancer Res 12:7444–7455, 2006.
209. Franco M, Man S, Chen L, et al.: Targeted anti-vascular endothelial 228. Sahora A, Rusk A, Henkin J, et al.: Prospective study of
growth factor receptor-2 therapy leads to short-term and long-term thrombospondin-1 mimetic peptides, ABT-510 and ABT-
impairment of vascular function and increase in tumor hypoxia, 898, in dogs with soft tissue sarcoma, J Vet Intern Med 26:
Cancer Res 66:3639–3648, 2006. 1169–1176, 2012.
210. Jain RK: Normalization of tumor vasculature: an emerging concept 229. Rusk A, Cozzi E, Stebbins M, et al.: Cooperative activity of cyto-
in antiangiogenic therapy, Science 307:58–62, 2005. toxic chemotherapy with antiangiogenic thrombospondin-I pep-
211. Carmeliet P, Jain RK: Principles and mechanisms of vessel nor- tides, ABT-526 in pet dogs with relapsed lymphoma, Clin Cancer
malization for cancer and other angiogenic diseases, Nat Rev Drug Res 12:7456–7464, 2006.
Discov 10:417–427, 2011. 230. Pirie-Shepherd SR, Coffman KT, Resnick D, et al.: The role of
212. Goel S, Duda DG, Xu L, et al.: Normalization of the vasculature angiostatin in the spontaneous bone and prostate cancers of pet
for treatment of cancer and other diseases, Physiol Rev 91:1071– dogs, Biochem Biophys Res Commun 292:886–891, 2002.
1121, 2011. 231. Troy GC, Huckle WR, Rossmeisl JH, et al.: Endostatin and vascu-
213. Sorensen AG, Emblem KE, Polaskova P, et al.: Increased survival of lar endothelial growth factor concentrations in healthy dogs, dogs
glioblastoma patients who respond to antiangiogenic therapy with with selected neoplasia, and dogs with nonneoplastic diseases, J Vet
elevated blood perfusion, Cancer Res 72:402–407, 2012. Intern Med 20:144–150, 2006.
214. Batchelor TT, Sorensen AG, di TE, et al.: AZD2171, a pan-VEGF 232. Kamstock D, Guth A, Elmslie R, et al.: Liposome-DNA complexes
receptor tyrosine kinase inhibitor, normalizes tumor vasculature infused intravenously inhibit tumor angiogenesis and elicit anti-
and alleviates edema in glioblastoma patients, Cancer Cell 11:83– tumor activity in dogs with soft tissue sarcoma, Cancer Gene Ther
95, 2007. 13:306–317, 2006.
215. Fabian MA, Biggs III WH, Treiber DK, et al.: A small molecule- 233. St Croix B, Rago C, Velculescu V, et al.: Genes expressed in human
kinase interaction map for clinical kinase inhibitors, Nat Biotechnol tumor endothelium, Science 289:1197–1202, 2000.
23:329–336, 2005. 234. Paoloni MC, Tandle A, Mazcko C, et al.: Launching a novel pre-
216. London CA, Malpas PB, Wood-Follis SL, et al.: Multi-center, clinical infrastructure: comparative oncology trials consortium
placebo-controlled, double-blind, randomized study of oral toc- directed therapeutic targeting of TNFalpha to cancer vasculature,
eranib phosphate (SU11654), a receptor tyrosine kinase inhibitor, PLoS One 4:e4972, 2009.
for the treatment of dogs with recurrent (either local or distant) 235. Hua H, Li M, Luo T, et al.: Matrix metalloproteinases in
mast cell tumor following surgical excision, Clin Cancer Res 15: tumorigenesis: an evolving paradigm, Cell Mol Life Sci 68:
3856–3865, 2009. 3853–3868, 2011.