Page 49 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 49

28    PART I    The Biology and Pathogenesis of Cancer


          86.   Borgatti A, Winter AL, Stuebner K, et al.: Evaluation of 18-F-flu-    107.   Ponder BA: Cancer genetics, Nature 411:336–341, 2001.
              oro-2-deoxyglucose (FDG) positron emission tomography/com-    108.   Wolffe  AP, Matzke MA: Epigenetics: regulation through repres-
              puted tomography (PET/CT) as a staging and monitoring tool for   sion, Science 286:481–486, 1999.
  VetBooks.ir  dogs with stage-2 splenic hemangiosarcoma - a pilot study, PLoS     109.   Costello  JF: Comparative epigenomics of leukemia,  Nat Genet
                                                                    37:211–212, 2005.
              One 12:e0172651, 2017.
          87.   Griffin LR, Thamm DH, Selmic LE, et al.: Pilot study utilizing
              Fluorine-18 fluorodeoxyglucose-positron emission tomography/    110.   Yu L, Liu C, Vandeusen J, et al.: Global assessment of promoter
                                                                    methylation in a mouse model of cancer identifies ID4 as a puta-
              computed tomography for glycolytic phenotyping of canine mast   tive tumor-suppressor gene in human leukemia, Nat Genet 37:265–
              cell tumors, Vet Radiol Ultrasound 59:461–468, 2018.  274, 2005.
          88.   Leblanc AK, Miller AN, Galyon GD, et al.: Preliminary evaluation of     111.   Rendeiro AF, Schmidl C, Strefford JC, et al.: Chromatin accessibil-
              serial (18) FDG-PET/CT to assess response to toceranib phosphate   ity maps of chronic lymphocytic leukaemia identify subtype-spe-
              therapy in canine cancer, Vet Radiol Ultrasound 53:348–357, 2012.  cific epigenome signatures and transcription regulatory networks,
          89.   Kim JH, Frantz AM, Sarver AL, et al.: Modulation of fatty acid   Nat Commun 7:11938, 2016.
              metabolism and immune suppression are features of in  vitro     112.   Cui  H, Cruz-Correa M, Giardiello FM, et  al.: Loss of IGF2
              tumour sphere formation in ontogenetically distinct dog cancers,   imprinting:  a  potential  marker  of  colorectal  cancer  risk,  Science
              Vet Comp Oncol 16:E176–E184, 2018.                    299:1753–1755, 2003.
          90.   Dunn GP, Bruce AT, Ikeda H, et al.: Cancer immunoediting: from     113.   Lapidot T, Sirard C, Vormoor  J, et  al.: A cell initiating human
              immunosurveillance to tumor escape,  Nat Immunol 3:991–998,   acute myeloid leukaemia after transplantation into SCID mice,
              2002.                                                 Nature 367:645–648, 1994.
          91.   Modiano  JF, Lindborg  BA, McElmurry RT, et  al.: Mesenchy-    114.   O’Brien CA, Kreso A, Jamieson CH: Cancer stem cells and self-
              mal stromal cells inhibit murine syngeneic anti-tumor immune   renewal, Clin Cancer Res 16:3113–3120, 2010.
              responses by attenuating inflammation and reorganizing the tumor     115.   Clarke MF, Fuller M: Stem cells and cancer: two faces of eve, Cell
              microenvironment, Cancer Immunol Immunother 64:1449–1460,   124:1111–1115, 2006.
              2015.                                              116.   Huntly BJ, Gilliland DG: Leukaemia stem cells and the evolution
          92.   Anderson KL, Modiano JF: Progress in adaptive immunotherapy   of cancer-stem-cell research, Nat Rev Cancer 5:311–321, 2005.
              for cancer in companion animals: success on the path to a cure, Vet     117.   Singh SK, Hawkins C, Clarke ID, et al.: Identification of human
              Sci 2:363–387, 2015.                                  brain tumour initiating cells, Nature 432:396–401, 2004.
          93.   Erez N, Truitt M, Olson P, et al.: Cancer-associated fibroblasts are     118.   Smith GH: Mammary cancer and epithelial stem cells: a problem
              activated in incipient neoplasia to orchestrate tumor-promoting   or a solution? Breast Cancer Res 4:47–50, 2002.
              inflammation in an NF-kappaB-dependent manner,  Cancer Cell     119.   Lamerato-Kozicki  AR, Helm KM, Jubala CM, et  al.: Canine
              17:135–147, 2010.                                     hemangiosarcoma originates from hematopoietic precursors with
          94.   Bergman PJ: Anticancer vaccines, Vet Clin North Am Small Anim   potential for endothelial differentiation, Exp Hematol 34:870–878,
              Pract 37:1111–1119, vi-ii, 2007.                      2006.
          95.   Alexandrov LB, Stratton MR: Mutational signatures: the patterns     120.   Wilson H, Huelsmeyer M, Chun R, et al.: Isolation and characteri-
              of somatic mutations hidden in cancer genomes, Curr Opin Genet   sation of cancer stem cells from canine osteosarcoma, Vet J 175:69–
              Dev 24:52–60, 2014.                                   75, 2008.
          96.   Alexandrov  LB, Nik-Zainal S, Wedge  DC, et  al.: Signatures of     121.   Stoica G, Lungu G, Martini-Stoica H, et al.: Identification of can-
              mutational processes in human cancer, Nature 500:415–421, 2013.  cer stem cells in dog glioblastoma, Vet Pathol 46:391–406, 2009.
          97.   Sharma  P, Allison JP: Immune checkpoint targeting in cancer     122.   Ito D, Endicott MM, Jubala CM, et al.: A tumor-related lymphoid
              therapy: toward combination strategies with curative potential, Cell   progenitor population supports hierarchical tumor organization in
              161:205–214, 2015.                                    canine B-cell lymphoma, J Vet Intern Med 25:890–896, 2011.
          98.   Weintraub  K: Drug development: Releasing the brakes,  Nature     123.   Breen  M, Modiano JF: Evolutionarily conserved cytogenetic
              504:S6–S8, 2013.                                      changes in hematological malignancies of dogs and humans—man
          99.   Maekawa N, Konnai S, Takagi S, et al.: A canine chimeric mono-  and his best friend share more than companionship, Chromosome
              clonal antibody targeting PD-L1 and its clinical efficacy in canine   Res 16:145–154, 2008.
              oral malignant melanoma or undifferentiated sarcoma,  Sci Rep     124.   Thomas R, Seiser EL, Motsinger-Reif A, et al.: Refining tumor-
              7:8951, 2017.                                         associated aneuploidy through ‘genomic recoding’ of recurrent
           100.   Maekawa N, Konnai S, Ikebuchi R, et al.: Expression of PD-L1   DNA copy number aberrations in 150 canine non-Hodgkin lym-
              on canine tumor cells and enhancement of IFN-gamma produc-  phomas, Leuk Lymphoma 52:1321–1335, 2011.
              tion from tumor-infiltrating cells by PD-L1 blockade, PLoS One     125.   Thomas R, Borst L, Rotroff D, et al.: Genomic profiling reveals
              9:e98415, 2014.                                       extensive heterogeneity in somatic DNA copy number aberra-
           101.   Shin IS, Choi EW, Chung JY, et al.: Cloning, expression and bio-  tions of canine hemangiosarcoma, Chromosome Res 22:305–319,
              assay of canine CTLA4Ig, Vet Immunol Immunopathol 118:12–18,   2014.
              2007.                                              126.   Angstadt AY, Motsinger-Reif A, Thomas R, et al.: Characterization
           102.   Graves SS, Stone D, Loretz C, et al.: Establishment of long-term   of canine osteosarcoma by array comparative genomic hybridiza-
              tolerance  to  SRBC  in  dogs  by  recombinant  canine  CTLA4-Ig,   tion and RT-qPCR: signatures of genomic imbalance in canine
              Transplantation 88:317–322, 2009.                     osteosarcoma parallel the human counterpart, Genes Chromosomes
           103.   Mueller MM, Fusenig NE: Friends or foes - bipolar effects of the   Cancer 50:859–874, 2011.
              tumour stroma in cancer, Nat Rev Cancer 4:839–849, 2004.    127.   Hedan B, Thomas R, Motsinger-Reif A, et al.: Molecular cytoge-
           104.   Nowell  PC: Mechanisms of tumor progression,  Cancer Res   netic characterization of canine histiocytic sarcoma: a spontaneous
              46:2203–2207, 1986.                                   model for human histiocytic cancer identifies deletion of tumor
           105.   Modiano JF, Lamerato-Kozicki AR, Jubala CM, et al.: Fas ligand   suppressor genes and highlights influence of genetic background on
              gene transfer for cancer therapy, Cancer Ther 2:561–570, 2004.  tumor behavior, BMC Cancer 11:201, 2011.
           106.   Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, et al.: Radiation     128.   Thomas R, Wang HJ, Tsai PC, et al.: Influence of genetic back-
              acts on the microenvironment to affect breast carcinogenesis by   ground on tumor karyotypes: evidence for breed-associated cytoge-
              distinct mechanisms that decrease cancer latency and affect tumor   netic aberrations in canine appendicular osteosarcoma, Chromosome
              type, Cancer Cell 19:640–651, 2011.                   Res 17:365–377, 2009.
   44   45   46   47   48   49   50   51   52   53   54