Page 49 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 49
28 PART I The Biology and Pathogenesis of Cancer
86. Borgatti A, Winter AL, Stuebner K, et al.: Evaluation of 18-F-flu- 107. Ponder BA: Cancer genetics, Nature 411:336–341, 2001.
oro-2-deoxyglucose (FDG) positron emission tomography/com- 108. Wolffe AP, Matzke MA: Epigenetics: regulation through repres-
puted tomography (PET/CT) as a staging and monitoring tool for sion, Science 286:481–486, 1999.
VetBooks.ir dogs with stage-2 splenic hemangiosarcoma - a pilot study, PLoS 109. Costello JF: Comparative epigenomics of leukemia, Nat Genet
37:211–212, 2005.
One 12:e0172651, 2017.
87. Griffin LR, Thamm DH, Selmic LE, et al.: Pilot study utilizing
Fluorine-18 fluorodeoxyglucose-positron emission tomography/ 110. Yu L, Liu C, Vandeusen J, et al.: Global assessment of promoter
methylation in a mouse model of cancer identifies ID4 as a puta-
computed tomography for glycolytic phenotyping of canine mast tive tumor-suppressor gene in human leukemia, Nat Genet 37:265–
cell tumors, Vet Radiol Ultrasound 59:461–468, 2018. 274, 2005.
88. Leblanc AK, Miller AN, Galyon GD, et al.: Preliminary evaluation of 111. Rendeiro AF, Schmidl C, Strefford JC, et al.: Chromatin accessibil-
serial (18) FDG-PET/CT to assess response to toceranib phosphate ity maps of chronic lymphocytic leukaemia identify subtype-spe-
therapy in canine cancer, Vet Radiol Ultrasound 53:348–357, 2012. cific epigenome signatures and transcription regulatory networks,
89. Kim JH, Frantz AM, Sarver AL, et al.: Modulation of fatty acid Nat Commun 7:11938, 2016.
metabolism and immune suppression are features of in vitro 112. Cui H, Cruz-Correa M, Giardiello FM, et al.: Loss of IGF2
tumour sphere formation in ontogenetically distinct dog cancers, imprinting: a potential marker of colorectal cancer risk, Science
Vet Comp Oncol 16:E176–E184, 2018. 299:1753–1755, 2003.
90. Dunn GP, Bruce AT, Ikeda H, et al.: Cancer immunoediting: from 113. Lapidot T, Sirard C, Vormoor J, et al.: A cell initiating human
immunosurveillance to tumor escape, Nat Immunol 3:991–998, acute myeloid leukaemia after transplantation into SCID mice,
2002. Nature 367:645–648, 1994.
91. Modiano JF, Lindborg BA, McElmurry RT, et al.: Mesenchy- 114. O’Brien CA, Kreso A, Jamieson CH: Cancer stem cells and self-
mal stromal cells inhibit murine syngeneic anti-tumor immune renewal, Clin Cancer Res 16:3113–3120, 2010.
responses by attenuating inflammation and reorganizing the tumor 115. Clarke MF, Fuller M: Stem cells and cancer: two faces of eve, Cell
microenvironment, Cancer Immunol Immunother 64:1449–1460, 124:1111–1115, 2006.
2015. 116. Huntly BJ, Gilliland DG: Leukaemia stem cells and the evolution
92. Anderson KL, Modiano JF: Progress in adaptive immunotherapy of cancer-stem-cell research, Nat Rev Cancer 5:311–321, 2005.
for cancer in companion animals: success on the path to a cure, Vet 117. Singh SK, Hawkins C, Clarke ID, et al.: Identification of human
Sci 2:363–387, 2015. brain tumour initiating cells, Nature 432:396–401, 2004.
93. Erez N, Truitt M, Olson P, et al.: Cancer-associated fibroblasts are 118. Smith GH: Mammary cancer and epithelial stem cells: a problem
activated in incipient neoplasia to orchestrate tumor-promoting or a solution? Breast Cancer Res 4:47–50, 2002.
inflammation in an NF-kappaB-dependent manner, Cancer Cell 119. Lamerato-Kozicki AR, Helm KM, Jubala CM, et al.: Canine
17:135–147, 2010. hemangiosarcoma originates from hematopoietic precursors with
94. Bergman PJ: Anticancer vaccines, Vet Clin North Am Small Anim potential for endothelial differentiation, Exp Hematol 34:870–878,
Pract 37:1111–1119, vi-ii, 2007. 2006.
95. Alexandrov LB, Stratton MR: Mutational signatures: the patterns 120. Wilson H, Huelsmeyer M, Chun R, et al.: Isolation and characteri-
of somatic mutations hidden in cancer genomes, Curr Opin Genet sation of cancer stem cells from canine osteosarcoma, Vet J 175:69–
Dev 24:52–60, 2014. 75, 2008.
96. Alexandrov LB, Nik-Zainal S, Wedge DC, et al.: Signatures of 121. Stoica G, Lungu G, Martini-Stoica H, et al.: Identification of can-
mutational processes in human cancer, Nature 500:415–421, 2013. cer stem cells in dog glioblastoma, Vet Pathol 46:391–406, 2009.
97. Sharma P, Allison JP: Immune checkpoint targeting in cancer 122. Ito D, Endicott MM, Jubala CM, et al.: A tumor-related lymphoid
therapy: toward combination strategies with curative potential, Cell progenitor population supports hierarchical tumor organization in
161:205–214, 2015. canine B-cell lymphoma, J Vet Intern Med 25:890–896, 2011.
98. Weintraub K: Drug development: Releasing the brakes, Nature 123. Breen M, Modiano JF: Evolutionarily conserved cytogenetic
504:S6–S8, 2013. changes in hematological malignancies of dogs and humans—man
99. Maekawa N, Konnai S, Takagi S, et al.: A canine chimeric mono- and his best friend share more than companionship, Chromosome
clonal antibody targeting PD-L1 and its clinical efficacy in canine Res 16:145–154, 2008.
oral malignant melanoma or undifferentiated sarcoma, Sci Rep 124. Thomas R, Seiser EL, Motsinger-Reif A, et al.: Refining tumor-
7:8951, 2017. associated aneuploidy through ‘genomic recoding’ of recurrent
100. Maekawa N, Konnai S, Ikebuchi R, et al.: Expression of PD-L1 DNA copy number aberrations in 150 canine non-Hodgkin lym-
on canine tumor cells and enhancement of IFN-gamma produc- phomas, Leuk Lymphoma 52:1321–1335, 2011.
tion from tumor-infiltrating cells by PD-L1 blockade, PLoS One 125. Thomas R, Borst L, Rotroff D, et al.: Genomic profiling reveals
9:e98415, 2014. extensive heterogeneity in somatic DNA copy number aberra-
101. Shin IS, Choi EW, Chung JY, et al.: Cloning, expression and bio- tions of canine hemangiosarcoma, Chromosome Res 22:305–319,
assay of canine CTLA4Ig, Vet Immunol Immunopathol 118:12–18, 2014.
2007. 126. Angstadt AY, Motsinger-Reif A, Thomas R, et al.: Characterization
102. Graves SS, Stone D, Loretz C, et al.: Establishment of long-term of canine osteosarcoma by array comparative genomic hybridiza-
tolerance to SRBC in dogs by recombinant canine CTLA4-Ig, tion and RT-qPCR: signatures of genomic imbalance in canine
Transplantation 88:317–322, 2009. osteosarcoma parallel the human counterpart, Genes Chromosomes
103. Mueller MM, Fusenig NE: Friends or foes - bipolar effects of the Cancer 50:859–874, 2011.
tumour stroma in cancer, Nat Rev Cancer 4:839–849, 2004. 127. Hedan B, Thomas R, Motsinger-Reif A, et al.: Molecular cytoge-
104. Nowell PC: Mechanisms of tumor progression, Cancer Res netic characterization of canine histiocytic sarcoma: a spontaneous
46:2203–2207, 1986. model for human histiocytic cancer identifies deletion of tumor
105. Modiano JF, Lamerato-Kozicki AR, Jubala CM, et al.: Fas ligand suppressor genes and highlights influence of genetic background on
gene transfer for cancer therapy, Cancer Ther 2:561–570, 2004. tumor behavior, BMC Cancer 11:201, 2011.
106. Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, et al.: Radiation 128. Thomas R, Wang HJ, Tsai PC, et al.: Influence of genetic back-
acts on the microenvironment to affect breast carcinogenesis by ground on tumor karyotypes: evidence for breed-associated cytoge-
distinct mechanisms that decrease cancer latency and affect tumor netic aberrations in canine appendicular osteosarcoma, Chromosome
type, Cancer Cell 19:640–651, 2011. Res 17:365–377, 2009.