Page 578 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 578
556 PART IV Specific Malignancies in the Small Animal Patient
46. White RG, Raabe OG, Culbertson MR, et al.: Bone sarcoma char- 69. Urfer SR, Gaillard C, Steiger A: Lifespan and disease predisposi-
acteristics and distribution in beagles fed strontium-90, Radiat Res tions in the Irish Wolfhound; a review, Vet Q 29:157–157, 2017.
136:178–189, 1993. 70. Karlsson EK, Sigurdsson S, Ivansson E, et al.: Genome-wide analy-
VetBooks.ir 47. White RG, Raabe OG, Culbertson MR, et al.: Bone sarcoma char- ses implicate 33 loci in heritable dog osteosarcoma, including regu-
latory variants near CDKN2A/B, Genome Biol 14:R132, 2013.
acteristics and distribution in beagles injected with radium-226,
Radiat Res 137:361–370, 1994.
48. Johnson AS, Couto CG, Weghorst CM: Mutation of the p53 71. Dillberger JE, McAtee SA: Osteosarcoma inheritance in two fami-
lies of Scottish deerhounds, Canine Genet Epidemiol 4(3), 2017.
tumor suppressor gene in spontaneously occurring osteosarcomas 72. Sarver AL, Thayanithy V, Scott MC, et al.: MicroRNAs at the
of the dog, Carcinogenesis 19:213–217, 1998. human 14q32 locus have prognostic significance in osteosarcoma,
49. Kirpensteijn J, Kik M, Teske E, et al.: TP53 gene mutations in Orphanet J Rare Dis 8(7), 2013.
canine osteosarcoma, Vet Surg 37:454–460, 2008. 73. Fenger JM, Roberts RD, Iwenofu OH, et al.: MiR-9 is overex-
50. Levine RA, Fleischli MA: Inactivation of p53 and retinoblastoma pressed in spontaneous canine osteosarcoma and promotes a meta-
family pathways in canine osteosarcoma cell lines, Vet Pathol static phenotype including invasion and migration in osteoblasts
37:54–61, 2000. and osteosarcoma cell lines, BMC Cancer 16:784, 2016.
51. Loukopoulos P, Thornton TR, Robinson WF: Clinical and patho- 74. Lopez CM, Yu PY, Zhang X, et al.: MiR-34a regulates the invasive
logic relevance of p53 index in canine osseous tumors, Vet Pathol capacity of canine osteosarcoma cell lines, PLoS One 13:e0190086,
40:237–248, 2003. 2018.
52. Mendoza S, Konishi T, Dernell WS, et al.: Status of the p53, 75. Fox MH, Armstrong LW, Withrow SJ, et al.: Comparison of DNA
Rb and MDM2 genes in canine osteosarcoma, Anticancer Res aneuploidy of primary and metastatic spontaneous canine osteosar-
18:4449–4453, 1998. comas, Cancer Res 50:6176–6178, 1990.
53. Sagartz JE, Bodley WL, Gamblin RM, et al.: p53 tumor suppres- 76. Liao AT, McCleese J, Kamerling S, et al.: A novel small molecule
sor protein overexpression in osteogenic tumors of dogs, Vet Pathol Met inhibitor, PF2362376, exhibits biological activity against
33:213–221, 1996. osteosarcoma, Vet Comp Oncol 5:177–196, 2007.
54. Setoguchi A, Sakai T, Okuda M, et al.: Aberrations of the p53 77. Liao AT, McMahon M, London C: Characterization, expression
tumor suppressor gene in various tumors in dogs, Am J Vet Res and function of c-Met in canine spontaneous cancers, Vet Comp
62:433–439, 2001. Oncol 3:61–72, 2005.
55. vanLeeuwen IS, Comelisse CJ, Misdorp W, et al.: p53 gene muta- 78. MacEwen EG, Kutzke J, Carew J, et al.: c-Met tyrosine kinase
tions in osteosarcomas in the dog, Cancer Lett 111:173–178, 1997. receptor expression and function in human and canine osteosar-
56. Thomas R, Wang HXJ, Tsai PC, et al.: Influence of genetic back- coma cells, Clin Exp Metastasis 20:421–430, 2003.
ground on tumor karyotypes; evidence for breed-associated cytoge- 79. Ferracini R, Angelini P, Cagliero E, et al.: MET oncogene aber-
netic aberrations in canine appendicular osteosarcoma, Chromosome rant expression in canine osteosarcoma, J Orthop Res 18:253–256,
Res 17:365–377, 2009. 2000.
57. Levine AJ, Chang AW, Dittmer D, et al.: The P53 tumor-suppres- 80. Liao AT, McMahon M, London CA: Identification of a novel
sor gene, J Lab Clin Med 123:817–823, 1994. germline MET mutation in dogs, Anim Genet 37:248–252, 2006.
58. Cam M, Gardner HL, Roberts RD, et al.: DeltaNp63 mediates 81. Fieten H, Spee B, Ijzer J, et al.: Expression of hepatocyte growth
cellular survival and metastasis in canine osteosarcoma, Oncotarget factor and the proto-oncogenic receptor c-Met in canine osteosar-
7:48533–48546, 2016. coma, Vet Pathol 46:869–877, 2009.
59. Wadayama B, Toguchida J, Shimizu T, et al.: Mutation spectrum 82. MacEwen EG, Pastor J, Kutzke J, et al.: IGF-1 receptor contributes
of the retinoblastoma gene in osteosarcomas, Cancer Res 54:3042– to the malignant phenotype in human and canine osteosarcoma,
3048, 1994. J Cell Biochem 92:77–91, 2004.
60. Scott MC, Sarver AL, Tomiyasu H, et al.: Aberrant retinoblastoma 83. Maniscalco L, Iussich S, Morello E, et al.: Increased expression of
(RB)-E2F transcriptional regulation defines molecular phenotypes insulin-like growth factor-1 receptor is correlated with worse survival
of osteosarcoma, J Biol Chem 290:28070–28083, 2015. in canine appendicular osteosarcoma, Vet J 205:272–280, 2015.
61. Levine RA, Forest T, Smith C: Tumor suppressor PTEN is mutated 84. Gorlick R, Huvos AG, Heller G, et al.: Expression of HER2/erbB-2
in canine osteosarcoma cell lines and tumors, Vet Pathol 39:372– correlates with survival in osteosarcoma, J Clin Oncol 17:2781–
378, 2002. 2788, 1999.
62. Angstadt AY, Motsinger-Reif A, Thomas R, et al.: Characterization 85. Scotlandi K, Manara MC, Hattinger CM, et al.: Prognostic and
of canine osteosarcoma by array comparative genomic hybridiza- therapeutic relevance of HER2 expression in osteosarcoma and
tion and RT-qPCR; signatures of genomic imbalance in canine Ewing’s sarcoma, Eur J Cancer 41:1349–1361, 2005.
osteosarcoma parallel the human counterpart, Genes Chromosomes 86. Flint AF, U’Ren L, Legare ME, et al.: Overexpression of the erbB-2
Cancer 50:859–874, 2011. proto-oncogene in canine osteosarcoma cell lines and tumors, Vet
63. Angstadt AY, Thayanithy V, Subramanian S, et al.: A genome-wide Pathol 41:291–296, 2004.
approach to comparative oncology; high-resolution oligonucle- 87. Gordon IK, Ye F, Kent MS: Evaluation of the mammalian target of
otide a CGH of canine and human osteosarcoma pinpoints shared rapamycin pathway and the effect of rapamycin on target expres-
microaberrations, Cancer Genet 205:572–587, 2012. sion and cellular proliferation in osteosarcoma cells from dogs, Am
64. Cooley DM, Waters DJ: Skeletal neoplasms of small dogs;a retrospec- J Vet Res 69:1079–1084, 2008.
tive study and literature review, J Am Anim Hosp Assoc 33:11–23, 1997. 88. Paoloni MC, Mazcko C, Fox E, et al.: Rapamycin pharmacokinetic
65. Phillips J, Lembcke L, Chamberlin T: Genetics of osteosarcoma in and pharmacodynamic relationships in osteosarcoma; a compara-
the scottish deerhound, J Vet Intern Med 24:675–675, 2010. tive oncology study in dogs, PLoS One 5:e11013, 2010.
66. Phillips JC, Lembcke L, Chamberlin T: A novel locus for canine 89. Shahi MH, Holt R, Rebhun RB: Blocking signaling at the level of
osteosarcoma (OSA1) maps to CFA34, the canine orthologue of GLI regulates downstream gene expression and inhibits prolifera-
human 3q26, Genomics 96:220–227, 2010. tion of canine osteosarcoma cells, PLoS One 9:e96593, 2014.
67. Phillips JC, Stephenson B, Hauck M, et al.: Heritability and segre- 90. Dailey DD, Anfinsen KP, Pfaff LE, et al.: HES1, a target of Notch
gation analysis of osteosarcoma in the Scottish deerhound, Genom- signaling, is elevated in canine osteosarcoma, but reduced in the
ics 90:354–363, 2007. most aggressive tumors, BMC Vet Res 9:130, 2013.
68. Rosenberger JA, Pablo NV, Crawford PC: Prevalence of and intrin- 91. Loukopoulos P, O’Brien T, Ghoddusi M, et al.: Characterisation
sic risk factors for appendicular osteosarcorna in dogs; 179 cases of three novel canine osteosarcoma cell lines producing high levels
(1996-2005), J Am Vet Med Assoc 231:1076–1080, 2007. of matrix metalloproteinases, Res Vet Sci 77:131–141, 2004.