Page 578 - Withrow and MacEwen's Small Animal Clinical Oncology, 6th Edition
P. 578

556   PART IV    Specific Malignancies in the Small Animal Patient


          46.   White RG, Raabe OG, Culbertson MR, et al.: Bone sarcoma char-   69.   Urfer SR, Gaillard C, Steiger A: Lifespan and disease predisposi-
              acteristics and distribution in beagles fed strontium-90, Radiat Res   tions in the Irish Wolfhound; a review, Vet Q 29:157–157, 2017.
              136:178–189, 1993.                                70.   Karlsson EK, Sigurdsson S, Ivansson E, et al.: Genome-wide analy-
  VetBooks.ir   47.   White RG, Raabe OG, Culbertson MR, et al.: Bone sarcoma char-  ses implicate 33 loci in heritable dog osteosarcoma, including regu-
                                                                    latory variants near CDKN2A/B, Genome Biol 14:R132, 2013.
              acteristics  and distribution  in beagles injected  with  radium-226,
              Radiat Res 137:361–370, 1994.
          48.   Johnson  AS, Couto CG, Weghorst  CM: Mutation of the p53    71.   Dillberger JE, McAtee SA: Osteosarcoma inheritance in two fami-
                                                                    lies of Scottish deerhounds, Canine Genet Epidemiol 4(3), 2017.
              tumor suppressor gene in spontaneously occurring osteosarcomas    72.   Sarver  AL,  Thayanithy V, Scott MC, et  al.: MicroRNAs at the
              of the dog, Carcinogenesis 19:213–217, 1998.          human 14q32 locus have prognostic significance in osteosarcoma,
          49.   Kirpensteijn J, Kik M, Teske E, et al.: TP53 gene mutations in   Orphanet J Rare Dis 8(7), 2013.
              canine osteosarcoma, Vet Surg 37:454–460, 2008.   73.   Fenger  JM, Roberts RD, Iwenofu OH, et  al.: MiR-9 is overex-
          50.   Levine RA, Fleischli MA: Inactivation of p53 and retinoblastoma   pressed in spontaneous canine osteosarcoma and promotes a meta-
              family pathways in canine osteosarcoma cell lines,  Vet Pathol   static phenotype including invasion and migration in osteoblasts
              37:54–61, 2000.                                       and osteosarcoma cell lines, BMC Cancer 16:784, 2016.
          51.   Loukopoulos P, Thornton TR, Robinson WF: Clinical and patho-   74.   Lopez CM, Yu PY, Zhang X, et al.: MiR-34a regulates the invasive
              logic relevance of p53 index in canine osseous tumors, Vet Pathol   capacity of canine osteosarcoma cell lines, PLoS One 13:e0190086,
              40:237–248, 2003.                                     2018.
          52.   Mendoza  S,  Konishi  T,  Dernell  WS,  et  al.:  Status  of the  p53,    75.   Fox MH, Armstrong LW, Withrow SJ, et al.: Comparison of DNA
              Rb  and  MDM2  genes  in  canine  osteosarcoma,  Anticancer  Res   aneuploidy of primary and metastatic spontaneous canine osteosar-
              18:4449–4453, 1998.                                   comas, Cancer Res 50:6176–6178, 1990.
          53.   Sagartz JE, Bodley WL, Gamblin RM, et al.: p53 tumor suppres-   76.   Liao AT, McCleese J, Kamerling S, et al.: A novel small molecule
              sor protein overexpression in osteogenic tumors of dogs, Vet Pathol   Met inhibitor, PF2362376, exhibits biological activity against
              33:213–221, 1996.                                     osteosarcoma, Vet Comp Oncol 5:177–196, 2007.
          54.   Setoguchi  A,  Sakai T, Okuda M, et  al.: Aberrations of the p53    77.   Liao AT, McMahon M, London C: Characterization, expression
              tumor suppressor gene in various tumors in dogs,  Am J Vet Res   and function of c-Met in canine spontaneous cancers, Vet Comp
              62:433–439, 2001.                                     Oncol 3:61–72, 2005.
          55.   vanLeeuwen IS, Comelisse CJ, Misdorp W, et al.: p53 gene muta-   78.   MacEwen  EG, Kutzke J, Carew J, et  al.: c-Met tyrosine kinase
              tions in osteosarcomas in the dog, Cancer Lett 111:173–178, 1997.  receptor expression and function in human and canine osteosar-
          56.   Thomas R, Wang HXJ, Tsai PC, et al.: Influence of genetic back-  coma cells, Clin Exp Metastasis 20:421–430, 2003.
              ground on tumor karyotypes; evidence for breed-associated cytoge-   79.   Ferracini R, Angelini P, Cagliero E, et al.: MET oncogene aber-
              netic aberrations in canine appendicular osteosarcoma, Chromosome   rant expression in canine osteosarcoma, J Orthop Res 18:253–256,
              Res 17:365–377, 2009.                                 2000.
          57.   Levine AJ, Chang AW, Dittmer D, et al.: The P53 tumor-suppres-   80.   Liao  AT, McMahon M, London CA: Identification of a novel
              sor gene, J Lab Clin Med 123:817–823, 1994.           germline MET mutation in dogs, Anim Genet 37:248–252, 2006.
          58.   Cam M, Gardner HL, Roberts RD, et al.: DeltaNp63 mediates    81.   Fieten H, Spee B, Ijzer J, et al.: Expression of hepatocyte growth
              cellular survival and metastasis in canine osteosarcoma, Oncotarget   factor and the proto-oncogenic receptor c-Met in canine osteosar-
              7:48533–48546, 2016.                                  coma, Vet Pathol 46:869–877, 2009.
          59.   Wadayama B, Toguchida J, Shimizu T, et al.: Mutation spectrum    82.   MacEwen EG, Pastor J, Kutzke J, et al.: IGF-1 receptor contributes
              of the retinoblastoma gene in osteosarcomas, Cancer Res 54:3042–  to the malignant phenotype in human and canine osteosarcoma,
              3048, 1994.                                           J Cell Biochem 92:77–91, 2004.
          60.   Scott MC, Sarver AL, Tomiyasu H, et al.: Aberrant retinoblastoma    83.   Maniscalco L, Iussich S, Morello E, et al.: Increased expression of
              (RB)-E2F transcriptional regulation defines molecular phenotypes   insulin-like growth factor-1 receptor is correlated with worse survival
              of osteosarcoma, J Biol Chem 290:28070–28083, 2015.   in canine appendicular osteosarcoma, Vet J 205:272–280, 2015.
          61.   Levine RA, Forest T, Smith C: Tumor suppressor PTEN is mutated    84.   Gorlick R, Huvos AG, Heller G, et al.: Expression of HER2/erbB-2
              in canine osteosarcoma cell lines and tumors, Vet Pathol 39:372–  correlates  with  survival  in  osteosarcoma,  J  Clin  Oncol  17:2781–
              378, 2002.                                            2788, 1999.
          62.   Angstadt AY, Motsinger-Reif A, Thomas R, et al.: Characterization    85.   Scotlandi K, Manara MC, Hattinger CM, et al.: Prognostic and
              of canine osteosarcoma by array comparative genomic hybridiza-  therapeutic  relevance  of HER2  expression in  osteosarcoma  and
              tion and RT-qPCR; signatures of genomic imbalance in canine   Ewing’s sarcoma, Eur J Cancer 41:1349–1361, 2005.
              osteosarcoma parallel the human counterpart, Genes Chromosomes    86.   Flint AF, U’Ren L, Legare ME, et al.: Overexpression of the erbB-2
              Cancer 50:859–874, 2011.                              proto-oncogene in canine osteosarcoma cell lines and tumors, Vet
          63.   Angstadt AY, Thayanithy V, Subramanian S, et al.: A genome-wide   Pathol 41:291–296, 2004.
              approach to comparative oncology; high-resolution oligonucle-   87.   Gordon IK, Ye F, Kent MS: Evaluation of the mammalian target of
              otide a CGH of canine and human osteosarcoma pinpoints shared   rapamycin pathway and the effect of rapamycin on target expres-
              microaberrations, Cancer Genet 205:572–587, 2012.     sion and cellular proliferation in osteosarcoma cells from dogs, Am
          64.   Cooley DM, Waters DJ: Skeletal neoplasms of small dogs;a retrospec-  J Vet Res 69:1079–1084, 2008.
              tive study and literature review, J Am Anim Hosp Assoc 33:11–23, 1997.   88.   Paoloni MC, Mazcko C, Fox E, et al.: Rapamycin pharmacokinetic
          65.   Phillips J, Lembcke L, Chamberlin T: Genetics of osteosarcoma in   and pharmacodynamic relationships in osteosarcoma; a compara-
              the scottish deerhound, J Vet Intern Med 24:675–675, 2010.  tive oncology study in dogs, PLoS One 5:e11013, 2010.
          66.   Phillips JC, Lembcke L, Chamberlin T: A novel locus for canine    89.   Shahi MH, Holt R, Rebhun RB: Blocking signaling at the level of
              osteosarcoma (OSA1) maps to CFA34, the canine orthologue of   GLI regulates downstream gene expression and inhibits prolifera-
              human 3q26, Genomics 96:220–227, 2010.                tion of canine osteosarcoma cells, PLoS One 9:e96593, 2014.
          67.   Phillips JC, Stephenson B, Hauck M, et al.: Heritability and segre-   90.   Dailey DD, Anfinsen KP, Pfaff LE, et al.: HES1, a target of Notch
              gation analysis of osteosarcoma in the Scottish deerhound, Genom-  signaling, is elevated in canine osteosarcoma, but reduced in the
              ics 90:354–363, 2007.                                 most aggressive tumors, BMC Vet Res 9:130, 2013.
          68.   Rosenberger JA, Pablo NV, Crawford PC: Prevalence of and intrin-   91.   Loukopoulos P, O’Brien T, Ghoddusi M, et al.: Characterisation
              sic risk factors for appendicular osteosarcorna in dogs; 179 cases   of three novel canine osteosarcoma cell lines producing high levels
              (1996-2005), J Am Vet Med Assoc 231:1076–1080, 2007.  of matrix metalloproteinases, Res Vet Sci 77:131–141, 2004.
   573   574   575   576   577   578   579   580   581   582   583