Page 57 - Kids and Bees Resource Booklet_SP_Neat
P. 57
2. Finding tessellation in nature
a. Have students look through science magazines, informational books and/or online to find examples
of tessellation in nature
3. Discussion:
a. Why is this helpful in nature?
¿Por que esto es u til en la naturaleza?
i. Efficient: there’s no wasted space or materials
b. Of triangles, squares and hexagons, what is the shape that uses the least amount of material make
the biggest shape?
i. Have students create individual hypothesis and then test it.
4. Experiment:
a. In groups of 3, have students investigate relationship between perimeter and area of triangles,
squares, and hexagons
En grupos de 3, haga que los estudiantes investiguen la relacio n entre el perí metro y el a rea de
tria ngulos, cuadrados y hexa gonos
i. Investigation 1:
1. Using 8 ½ X 11 paper, have students create triangular, square and hexagonal prisms
by folding the paper into a tube. The face of each prism will have the same perimeter
because they were created with the same size paper.
Usando papel de 8 ½ X 11, haga que los estudiantes creen prismas triangulares,
cuadrados y hexagonales doblando el papel en un tubo. La cara de cada prisma
tendra el mismo perí metro porque se crearon con papel del mismo taman o.
2. Fill the triangular prism with cereal (or another large material) .
Rellene el prisma triangular con cereal (u otro material grande).
3. Pick up the triangular prism and measure how many cups of cereal were needed to
fill it up.
Levante el prisma triangular y mida cua ntas tazas de cereal se necesitaron para
llenarlo.
4. Repeat with square and hexagonal prism.
Repite con prisma cuadrado y hexagonal.
a. Alternatively, don’t measure the number of cups of cereal and just use the
same cereal to fill each prism.
Alternativamente, no mida la cantidad de tazas de cereal y solo use el mismo
cereal para llenar cada prisma.
b. Discuss if each prism uses the same amount of cereal.
Discuta si cada prisma usa la misma cantidad de cereal.
5. What does this tell us about the volumes of the three prisms? Are they the same?
What does this say about the relationship between the perimeter and the volume? If
we took a cross section of this prism, so we had a 2D shape instead of a 3D one, what
would the relationship between its perimeter and area be?
¿Que nos dice esto acerca de los volu menes de los tres prismas? ¿Son lo mismo? ¿Que
dice esto acerca de la relacio n entre el perí metro y el volumen? Si toma ramos una
seccio n transversal de este prisma y tuvie ramos una forma 2D en lugar de una 3D,
¿cua l serí a la relacio n entre su perí metro y su a rea?
57