Page 31 - Banking Finance December 2018
P. 31

A

                                                                                             co  ercia   statistica
                                                                                             soft are  s ch    as
                                                                                               ie s  Mat a   etc. or
                                                                                             the  free  open  so rce
                                                                                             soft are  R .   rther  an
                                                                                             artificia  ne ra  s ste
                                                                                              hich  si   ates  the
                                                                                             h  an  earnin  process
                                                                                              i ht   e  e en   ore
                                                                                              sef  .   he  s ste
            i ur       t rn tiv    t  vis    vis   r  ition     t    earns the nat re of the re ationship  et een inp ts and
                                                               o tp ts    repeated   sa p in  inp t o tp t infor ation
             rther  a  ar e proportion of the ne    a ai a  e data is  sets.  e ra  net or s ha e a partic  ar ad anta e o er
           passi e   prod ced as a res  t of peop e s interactions  ith  e pert s ste s  hen data are nois  or inco p ete  these
           di ita  ser ices s ch as  o i e phones  internet searches   can  a e an ed cated   ess  as   ch as  o  d a h  an
           on ine p rchases  and e ectronic pa  ent transactions.  e pert.
            haracteristics of indi id a s can  e inferred    de e opin
           a  orith s that  a e  se of these data.  s the pri ar    a  e    ohnson  and Raina         descri ed ho  ne ra
            enerators of the data are not in the contro  of their di ita   net or s can incorporate s   ecti e  non   antifia  e
           footprints and a so cannot   ide the  a s in  hich it  a   infor ation into credit appro a  decisions.  i  and  cott
            e   sed   there  is  hard    an   ris   of   anip  ated  or           sed a s per ised artificia  ne ra  net or  to predict
           ca o f a ed infor ation as in the case of the traditiona    an r ptc   in  a  sa p e  of       fir s.   herefore   the
           financia  state ents and pro ections.  o e er  there re ain  cha  en e is to choose a set of a ternati e data points that
           concerns a o t the pri ac .  hi e pri ac  can  e protected  to ether  create  a  co prehensi e  ris   profi e  for  the
               s ita  e  safe  ards   the  access  to  hi h   a it    orro er si i ar to the pop  ar fi e  s of credit  character
            nad  terated data and a i it  to  a e decisions  ased on  capacit   capita   co  atera   and conditions.   ch  ode s are
           s ch data is a  reat acco p ish ent in the cha  en in   or d  eas  to  nderstand and are consistent  ith the standard ris
           of credit ana  tics.                                 ana e ent fra e or s.


             .   sin     ternati e   ata  an   the  . Re ent  e e op ents in a ternati e

            ssess ent  pproa hes                                re it s orin
            t is e pected that the a o nt of data in the  or d  i     ar e n   ers of  o  inco e peop e   icro entreprene rs
           increase    ti es  et een 2    and 2 2  .  o e er  a  s a   sca e   sinesses  and r ra  pop  ations that pre io s
            a orit  of this data is non  inear and  nstr ct red in the  did not ha e access to for a  financia  ser ices are no
           for  of i a es  doc  ents and  ideos.  n a ternati e  increasin     ein  di ita     an ed    a ran e of o d and ne
           approach to credit ana  sis  therefore  re  ires data  inin   financia   ser ices  pro iders  inc  din   non traditiona
           and  sin  ad anced a  orith s for findin  re ationships in a  pro iders s ch as  o i e net or  operators   B  s and
           non  inear incon r ent data set.   tho  h a p re    achine    intechs.  o  o in  are so e of the s ccess stories fro
            earnin  approach  i ht res  t in i pro ed prediction in  across the  or d  hich sho s the i  ense potentia  of the
           these sit ations o er a h  an  earnin  process  there is a so  a ternati e credit ana  tics.
            erit in the ar   ent that the   siness and ris   ana ers       st d  cond cted    researchers at the Massach setts
             st  nderstand as to ho  the inferences are dra n.  ross    nstit te of  echno o    M    has de onstrated that
           ta   ation or si i ar ana  sis of sin  e predictors is the core  the  introd ction  of  techno o   ena  ed  financia
             i din    oc  of the a ternati e credit scorin   ode s.  ser ices can he p red ce po ert  .  he st d  esti ated
            reatin  cross ta   ations is not  er  diffic  t  sin  an   that since 2     access to  o i e  one  ser ices that


             B            CE |                                                            DECEMBER | 201  |  1
   26   27   28   29   30   31   32   33   34   35   36