Page 842 - Mechatronics with Experiments
P. 842

828   MECHATRONICS

































                              FIGURE A.6: 3D line plot example.


                              3D surface plots are done by
                              mesh(x1,y1,z1)       ; % 3-d plots with lines
                              surf(x1,y1,z1)       ; % 3-d plots with surface
                              contour(x1,y1,z1) ; % Generates a contour plot
                              surfc(x1,y1,z1)      ; % 3-d plots with surface and contour
                                                       combined
                              where x1 and y1 form a 2D matrix defining the x-y grid’s coordinates. These data are
                              typically created from row vectors x and y using the

                              [x1, y1] = meshgrid(x,y)
                              function. The x1 vector is rows of the x vector, and the y1 vector is the columns of the
                                                                           2
                                                                             2
                              y vector. For example, to evaluate the function x ⋅ e (−x −y )  over the range −1 < x < 1,
                              −1 < y < 1,
                                     clc ;
                                     clf ;
                                     [X,Y] = meshgrid(-1:.5:1, -1:.5:1)
                                     Z = X.∗ exp(-X.ˆ2 - Y.ˆ2)
                                     surf(X,Y,Z)
                              >>
                               X =

                                -1.0000     -0.5000           0     0.5000     1.0000
                                -1.0000     -0.5000           0     0.5000     1.0000
                                -1.0000     -0.5000           0     0.5000     1.0000
                                -1.0000     -0.5000           0     0.5000     1.0000
                                -1.0000     -0.5000           0     0.5000     1.0000
   837   838   839   840   841   842   843   844   845   846   847