Page 846 - Mechatronics with Experiments
P. 846

832   MECHATRONICS
                              A.1.6 Controller Design Functions: Transform Domain
                                      and State-Space Methods

                              A transfer function is defined with numerator and denominator coefficients. A transfer
                              function description can be converted between three different ways of expressing it: (i)
                              numerator and denominator polynomials form, (ii) poles-zeros and gain form, (iii) partial
                              fraction expansion form (poles, residues, and DC gain).

                                        num(s)
                               H(s) = ———————
                                        den(s)

                                            (s-z1)(s-z2)...(s-zn)
                               H(s) =   K ——————————————————————
                                            (s-p1)(s-p2)...(s-pn)

                              num(s)         R(1)        R(2)                R(n)
                              - ———  =     ———————— + ———————- + ... + ———————– + K(s)
                              den(s)       s - P(1)    s - P(2)            s - P(n)

                              These functions are applied in s-domain as well as z-domain transfer functions.
                              numG = [1];                        % Numerator coeficients
                                                                 %   of the transfer function.
                              denG = [ 1  2   4] ;               % Denominator ......
                                                                 % ...........................
                              Gs = tf(numG,denG) ;               %  Gs defines the transfer funtion.

                              [z,p,k]      = tf2zp(numG, denG);  % convert to zero-pole-gain form
                                                                 % from the polynomial num(s)/den(s)
                                                                   form
                              [numG, denG] = zp2tf(z,p,k);       % do the reverse

                              [r,p,k] = residue(numG, denG) ;    % convert  from num(s)/den(s) form
                                                                 % to Partial Fraction Expansion form

                              [num, den] = residue(r,p,k) ;     % convert from partial fraction
                                                                  expansion form
                                                                % to numerator and denominator
                                                                  polynomial form

                              p = pole(Gs)  ;                   % Given G(s), get poles,
                              [z, k] = zero(Gs)  ;              % ..........  get zeros and gain
                              [num,den]=zp2tf(z,p,k) ;          % obtain the num(s)/den(s) form
                              If we define complex variables “s” and “z” as follows for Laplace and Z-transforms, then
                              we can express the transfer functions in symbolic form,

                              s = TF(’s’) ; %  specifies the transfer function H(s) = s
                                               (Laplace variable).
                              z = TF(’z’,TS) ; %  specifies H(z) = z with sample time TS.
                              You can then specify transfer functions directly as rational expressions in s or z, for example,

                              s = tf(’s’);
                              G = (s+1)/(sˆ2+3∗s+1) ;
                              z = tf(’z’);
                              H = (z+1)/(zˆ2+4∗z +2) ;
   841   842   843   844   845   846   847   848   849   850   851