Page 47 - ISCI’2017
P. 47

To aspire n → ∞, then we obtain the asymptotic Gilbert–Varshamov bound:

                                                     R ≤1 − H q ( ) δ ,                                                                 (2)

                                                                  q −1 
            where Hq(x) is q-ary entropy function on the interval  0 ,    , at that
                                                                
                                                                    q  
                                                                                          −
                                                                                         q 1
                               H  ( ) x =  x log  (q −  ) 1 −  x log  (x ) −  1 ( −  ) x  log  1 ( −  ) x ,  0 <  x ≤  .
                                                                        q
                                           q
                                                         q
                                q
                                                                                          q
               Thus, error-correcting coding problem consists of searching of regular algorithms for a building
            of the linear (n, k, d)-block codes, the parameters of which are satisfy to the code boundary (1) or/and
            the asymptotic code boundaries of which are satisfy to expression (2).

               Linear code Vk (as the linear subspace into Vn) defines by a set of basis (linearly independent)

            vectors
                                                   (g  0 , 0  , g  1 , 0  ,..., g  , 0 −n  1 ) ,


                                                    (g  0 , 1  , g  1 , 1  ,..., g  , 1 − 1 ),
                                                                  n
                                                           …
                                                 (g k −  0 , 1  , g k −  1 , 1  ,..., g k −  , 1 −n  1 ),

            which are usually presenting in a matrix kind via generating matrix

                                                  g      g     ...  g     
                                                    0 , 0   1 , 0     , 0 n −1  

                                             G  =     g  0 , 1  g  1 , 1  ...  g  , 1 n −1   ,
                                                                           
                                                   ...    ...  ...    ...  
                                                  g     g      ... g      
                                                   k − 0 , 1  k − 1 ,1  k − , 1 n −1 
            of the rank rank (G) = k and a dimensionality k × n.


               Random code word c = (c0, c1, …, cn-1) of code Vk is a linear combination of rows from the matrix

            G. The encoding consists in a comparing of each information word i = (i0, i1, …, in-1)  with the symbols

            from the field GF(q) to some code word (c0, c1, …, cn-1). The simplest method of coding given by the
            expression

                                                            c =  iG .                                                                 (3)

               Matrix G conveniently reduced to canonical form by linear operations on the rows


                                            1  0   ...  0  g *     g *    ...  g *   
                                                             * k , 0  * , 0  k+1  * , 0  n−1  
                                      G =   0  1   ...  0  g  k , 1  g  , 1 k+1  ...  g  , 1 n−1    =  I  P ,                    (4)
                                       *
                                           
                                                                                      
                                            ...  ...  ...  ...  ...  ...  ...    ...  
                                             0  0  ...  1  g *    g *     ...  g *   
                                                            k−1  k ,  k− ,1  k+1  k− ,1 n 
                                                                                    −1
                                                                                                          47
   42   43   44   45   46   47   48   49   50   51   52