Page 201 - Fiber Optic Communications Fund
P. 201

182                                                               Fiber Optic Communications



            where
                                            √
                                      m (t)=  P (2x + 1) x ∈[−X∕2, X∕2 − 1],                 (4.122)
                                       I
                                               0
                                            √
                                     m (t)=   P (2y + 1) y ∈[−Y∕2, Y∕2 − 1].                 (4.123)
                                               0
                                       Q
            Here, x and y are integers. In complex notation, Eq. (4.121) can be written as
                                                 √
                                                     2
                                            A out  =  m + m 2 Q  e i(2f c t+) ,          (4.124)
                                                     I
            where                                        [   ]
                                                          m Q
                                                 = tan −1   ,                              (4.125)
                                                          m I
                                                       2    2   2
                                             P   = |A | = m + m ,                            (4.126)
                                              out   out     I   Q
                                           X∕2−1 Y∕2−1
                                         1  ∑     ∑    2    2
                                   ̄
                                  P   =               m + m
                                    out                I    Q
                                        XY
                                           x=−X∕2 y=−Y∕2
                                           [  X∕2−1            Y∕2−1       ]
                                        P 0    ∑                ∑
                                                          2
                                      =     Y      (2x + 1) + X     (2y + 1) 2
                                        XY
                                              x=−X∕2          y=−Y∕2
                                             2
                                                     2
                                        P [(X − 1)+(Y − 1)]
                                         0
                                      =                    .                                 (4.127)
                                                 3
            4.10   Additional Examples

            Example 4.5
            Find the power spectral density of the unipolar signals.
            Solution:
            From Eq. (4.9), we have
                                                           L  L
                                                          ∑ ∑
                                      2
                                           2
                               (f)= A |̃p(f)| lim  1           < a a > e i2f(l−k)T b .   (4.128)
                               m      0     L→∞ (2L + 1)T           l k
                                                        b l=−L k=−L
            For unipolar signals, a takes values 1 or 0 with equal probability. Let us write
                              k
                                                           1
                                                  a = b + ,                                  (4.129)
                                                   k    k
                                                           2
            where b is a random variable that takes values ±1∕2 with equal probability similar to the random variable
                   k
            associated with the polar signal. Using Eq. (4.129), Eq. (4.128) can be expanded as
                                            L  L
                                     1     ∑ ∑ [          1      1      1  ]
                            2
                       2
                (f)= A |̃p(f)| lim               ⟨b b ⟩ + ⟨b ⟩ + ⟨b ⟩ +  exp (i2f(l − k)T ).  (4.130)
                                                                    l
                                                             k
                m
                                                     k l
                                                                                        b
                       0
                             L→∞ (2L + 1)T
                                         b l=−L k=−L      2      2      4
   196   197   198   199   200   201   202   203   204   205   206