Page 202 - Fiber Optic Communications Fund
P. 202

Optical Modulators and Modulation Schemes                                          183



           Since
                                                     1
                                             ⟨b b ⟩ =  if k = l
                                               k l
                                                     4
                                                   = 0 otherwise                           (4.131)
           and
                                                  ⟨b ⟩ = 0,                                (4.132)
                                                    k
           Eq. (4.130) reduces to
                                         {                                    }
                                                                L   L
                                            1            1     ∑ ∑
                                  2     2                              i2f(l−k)T b
                           m
                           (f)= A |̃p(f)|    + lim                  e          .         (4.133)
                                  0
                                           4T b  L→∞ 4(2L + 1)T b l=−L k=−L
           Using the following identities:
                                              L                L
                                             ∑              1  ∑       l
                                         lim    e i2flT b  = lim  (f −  ),
                                         L→∞            L→∞ T          T
                                             l=−L            b l=−L     b
                                            L
                                       1   ∑
                                 lim           e −i2fkT b  = 1,                          (4.134)
                                 L→∞ 2L + 1
                                           k=−L
           Eq. (4.133) reduces to
                                           2    2  {       ∞          }
                                          A |̃p(f)|     1  ∑        l
                                           0
                                    (f)=          1 +       (f −  )  .                 (4.135)
                                    m
                                            4T b       T b l=−∞    T b



           Example 4.6
           A raised-cosine pulse is defined as
                                             [      (   )]    (    )
                                           1          t        t
                                      p(t)=   1 + cos      rect      .                     (4.136)
                                           2          T B       2T B
           In a polar signaling scheme, raised-cosine pulses are used. Find the PSD.
           Solution:
           First let us calculate the Fourier transform of p(t).
                                         [    (    )]
                                                 t
                                        rect         = 2T sinc (2fT ),                    (4.137)
                                                                  b
                                                          b
                                                2T b
                                [      (   )]    [                          ]
                                         t       exp (i2f t)+ exp (−i2f t)
                                                          0
                                                                       0
                               x(t) cos      =                         x(t)
                                         T                   2
                                          b
                                                ̃ x(f − f )+ ̃x(f + f )
                                                              0
                                                     0
                                              =                 ,                          (4.138)
                                                       2
   197   198   199   200   201   202   203   204   205   206   207