Page 405 - Fiber Optic Communications Fund
P. 405

386                                                               Fiber Optic Communications



            Since the filter is not matched to x(t), Eq. (8.35) can not be used to find  max . Instead, we use Eqs. (8.27) and
            (8.28) to calculate P . The Fourier transform of Eq. (8.365) is
                             b
                                        ̃ s()  ̃ s( − 2 )e −i2Δ  ̃ s( + 2 )e i2Δ
                                                                       IF
                                                     IF
                                  ̃ x()=  +                +               .               (8.366)
                                         2           4               4
            The transfer function of the filter matched to s(t) is
                                                         ∗
                                                  ∗
                                          H ()=[̃s ()− ̃s ()] exp (iT )
                                           s
                                                                    b
                                                         0
                                                  1
                                                  ∗
                                               = 2̃s () exp (iT ).                       (8.367)
                                                  1          b
            Substituting Eqs. (8.366) and (8.367) into Eq. (8.6), we find
                                                      ∞
                                                 1      ̃ s ()  ∗
                                                         1
                                         u (T )=             ⋅ 2̃s ()d,                  (8.368)
                                          1  b   2 ∫ −∞  2    1
            where we have ignored the overlap between the frequency components at  ± 2 and  since the bandwidth
                                                                            IF
            of s(t) is assumed to be much smaller than  . From Parseval’s relations, it follows that
                                                IF
                                              u (T )= E =−u (T ).                            (8.369)
                                                  b
                                                            0
                                                       1
                                                               b
                                               1
            Next, let us consider the noise propagation. Let the noise before the demodulator be
                                              n (t)= n ASE (t)+ n (t),                       (8.370)
                                                              d
                                               het
                                            n ASE  = n cos  + n cQ  sin ,                (8.371)
                                                   cI
                                             n = n cos  + n dQ  sin ,                    (8.372)
                                                  dI
                                              d
                                                  =  t +Δ,                             (8.373)
                                                      IF
                                          n (t)= n het,I  cos  + n het,Q  sin ,          (8.374)
                                           het
                                                n  (t)= n + n ,                              (8.375)
                                                 het,I   cI  dI
                                               n   (t)= n  + n  .                            (8.376)
                                                het,Q   cQ    dQ
            After the synchronous demodulator, the noise is
                                     n(t)= n (t) cos 
                                           het
                                                   2
                                        = n het,I (t)cos  + n het,Q (t) sin  cos 
                                          n het,I (t)  n het,I (t) cos 2 + n het,Q  sin 2
                                        =       +                         ,                  (8.377)
                                            2                 2
                                                 ̃ n het,I ()
                                          ̃ n()=      + terms at 2 .                     (8.378)
                                                                   IF
                                                   2
            The components of ̃n() around 2 are removed by the low-pass filter, H () placed just before the decision.
                                        IF
                                                                       s
            Hence, we ignore these terms and obtain
                                                                2
                                                       ⟨|̃n het,I  ()| ⟩
                                                   2
                                             ⟨|̃n()| ⟩ =                                   (8.379)
                                                            4
   400   401   402   403   404   405   406   407   408   409   410