Page 541 - Fiber Optic Communications Fund
P. 541

522                                                               Fiber Optic Communications


                                Fiber 1  Amp. 1  Fiber 2 Amp. 2  Fiber N Amp. N
                        q(t,0)
                  Tx.                   G 1         G 2              G N        Rx.       DSP
                                 , – , –   , – , –   , – , –  front end
                                 2,1  1  1   2,2  2  2       2,N  N  N

                                  Figure 11.27  Propagation in an N-span fiber-optic system.

                                                             DSP
                                                   virtual       virtual       virtual
                                                   fiber N      fiber N – 1    fiber 1
                               IF and
                   Rx.                      Loss          Loss           Loss           Decision
                 front end   phase noise    1/G N  – 2,N , – , –  1/G N – 1  –  , –  ,  1/G 1  – , – , –  circuit
                              removal                N  N        2,N – 1  N – 1  2,1  1  1
                                                                  –
                                                                   N – 1
                             Figure 11.28  Digital back propagation for a N-span fiber-optic system.


            11.9   Additional Examples


            Example 11.2

            The noise n is a zero-mean complex random variable with Gaussian distribution. Show that the mean of the
                      l
                         ′
            effective noise n given by Eq. (11.33) is zero.
                         l
            Solution:
            Let
                                       n = A exp (i )= A cos ( )+ iA sin ( ).         (11.148)
                                        l
                                                                  l
                                                                       l
                                                       l
                                                  l
                                            l
                                                            l
            Since n is a Gaussian random variable, it follows that  is a random variable with uniform distribution in the
                                                        l
                  l
            interval [0, 2]:
                                  < n >=< A >< cos ( ) > +i < A >< sin ( ) >= 0.        (11.149)
                                                                       l
                                     l
                                            l
                                                              l
                                                     l
            Consider
                              k
                                               k
                                                           k
                                   k
                             n = A exp (ik )= A cos (k )+ iA sin (k ),  k = 1, 2, … , M  (11.150)
                              l    l      l    l      l    l     l
                                                              k
                                   k
                                           k
                                 < n >=< A >< cos (k ) > +i < A >< sin (k ) >= 0.       (11.151)
                                   l       l         l        l         l
            Since  is a uniformly distributed random variable in the interval [0, 2], k is also a uniformly distributed
                  l
                                                                          l
            random variable in the interval [0, 2k] and therefore < cos (k ) >=< sin (k ) >= 0. Eq. (11.33) may be
                                                                l
                                                                            l
            rewritten as
                                           ′
                                                                   M
                                                       2
                                          n = K n + K n +···+ K n ,                         (11.152)
                                           l    1 l   2 l       M l
            where K , m = 1, 2, 3, … M, are complex constants:
                   m
                                     ′
                                                                         M
                                                         2
                                  < n >= K < n > +K < n > +· · · + K < n >.                 (11.153)
                                     l     1   l     2   l          M    l
                    k
            Since < n > is zero, it follows that
                    l                                 ′
                                                   < n >= 0.                                (11.154)
                                                      l
   536   537   538   539   540   541   542   543   544   545   546