Page 47 - CCFA Journal - Sixth Issue
P. 47

加中金融                                           Quant Corner 数量分析

    The above conditions ensure that  (k  R )  0  for all k   . R    上述条件保证了对所有   ∈   , (k         R )   0 。请注意映
                                  w
                                     ;
                                                                                                w
                                                                                                    ;
    Note  further  that  the  function  k   w (k ; R )    is  strictly   射是全实域严格凸的。以上关于 (k          R )的定义中,
                                                                                                 w
                                                                                                     ,
    convex  on  the  whole  real  line.  From  the  definition  of
    w (k ,  ),                                                        增加  会产生所有方差加大,在垂直方向的上升
           R
                                                                       增加  会产生看涨和看跌两翼的斜率上升,收紧波
         Increasing    increases the general level of variance, a       动率的微笑
           vertical translation of the smile;                          增加  会降低(或升高)左(或右)翼,产生波动
         Increasing    increases the slopes of both the put and         率微笑的逆时针旋转
           call wings, tightening the smile;                           增加  会造成波动率向右移动
         Increasing    decreases (increases) the slope of the left
           (right) wing, a counter-clockwise rotation of the           增加  会降低波动率微笑上平价期权的曲率
           smile;
         Increasing    translates the smile to the right;        SVI 满足以下无投机条件:1)静态无投机,即不可能今
         Increasing    reduces the at-the-money (ATM)            天没有投资而明天预期回报为非零。2)日历无投机,即
           curvature of the smile.                                日历利差的成本为正。3)垂直无投机,即垂直方向的利
                                                                  差成本为正。4)水平无投机,即蝴蝶利差也为正。
    SVI model stratifies the following arbitrage free conditions. 1)
    Static arbitrage free condition: static arbitrage free condition   3. 参数标定
    makes  it  impossible  to  invest  nothing  today  and  receive
    positive return tomorrow; 2) Calendar arbitrage free condition:   在此我们介绍 SVI 模型参数的标定,并提供数值范例。
    the cost of a calendar spread should be positive; 3) Vertical   在 SVI参数标定时,必须匹配到已知的隐含波动率。当然
    (spread) arbitrage free condition: The cost of a vertical spread
    should  be  positive;  4)  Horizontal  (butterfly)  arbitrage  free   有很多目标函数。我们选择 Gatheral 和 Jacquier (2014)的
    condition: The cost of a butterfly spread should be positive.   方 法 , 即 误 差 方 差 最 小 化 , 例 如 使 用 Levenberg-
                                                                  Marquardt 优化法来取得下述目标函数的最优解
    3. Parameter Calibration
                                                                            n
                                                                                              i
                                                                                                         2
    We introduce a calibration method for the parameters in the   err  min  W i ( i SVI    MarketImpl iedvol )
    SVI  model  and  then  presents  some  numerical  examples  to          i 1     model i
    demonstrate their accuracy  by  comparing them  with market         i                                       i
    data.                                                         其中   SVI  是 SVI 参数模型得到的隐含波动率,               BS 是观察
                                                                  到的 Black-Scholes 模型下的隐含波动率。
    To calibrate SVI parameters to observed implied volatilities,
    there are many  ways  of  defining  an objective function.  We   最后,我们可以用线性插值法或其它方法获得所有的到
    adopt  the  Gatheral  and  Jacquier  (2014)  approach  to  take  a   期时的 SVI 参数。
    square-root as an objective function. At each volatility slice the
    model  fits  the  implied  volatilities  using  a  Levenberg-
    Marquardt optimization routine with the following objective
    function:

               n
                     i
                                i
    err  min  W i ( SVI    MarketImpl iedvol )               4. 数值计算范例
                                           2
              i 1      model i
    where  SVI   is the implied volatility using SVI parametrization,   以 2015-08-30 的 SPX 期权报价为例。SPX 的即时价格是
            i
                                                                  1550。表一是平价差的对数值和对应的隐含波动率。
    based on the i-th observation;   BS  is the implied volatility
                                   i
    under  Black-Scholes  pricing  formula,  based  on  the  i-th
    observation. After we obtain the SVI parameters, we can build   表二是彭博社 SPX 的隐含波动率。分别表示在三个时间
    the implied volatility surface. In order to price the option in   点 T=0.136986, T=3.002739 和 T=6.002739 的不同的期权
    different time slices, we need to interpolate the SVI parameters.   执行价所对应的隐含波动率。
    Usually the linear interpolation is used.
                                                                  对上述目标函数采用 Levenberg-Marquardt 优化算法可以
    4. Numerical Examples
                                                                  得到下列各图标。
    We take SPX option quotes as an example as of 8/30/2015. The
    spot price for SPX is 1550, and the log-moneyness are listed in
    Table 1.
    The market implied volatilities for SPX from Bloomberg are
    listed in Table 2. The data for implied volatilities at the time
    slice T = 0.136986 are in the first and second rows; and the
    third and fourth rows are the data for implied volatilities at time
    slice T =3.002739; and fifth and sixth are the data for implied
    volatilities at time slice T =6.002739.

    Using the objective function above and Levenberg-Marquardt
    optimization routine, we obtained the following parameters in
    SVI model.




                                           CCFA JOURNAL OF FINANCE   February 2022
                                                                                                          Page 47     第47页
   42   43   44   45   46   47   48   49   50   51   52