Page 289 - FUNDAMENTALS OF COMPUTER
P. 289

NPP










                    NPP               Number System, Boolean Algebra and Logic Circuits             289


                    Basic Logic Design                          ~o{gH$ bm°{OH$ {S>OmBZ

                        Modern digital computers process binary     AmYw{ZH$ {S>{OQ>b  H$åß`yQ>a ~mBZar  OmZH$mar na
                    information. The internal circuit of digital com-  {d{^Þ {H«$`mE± H$aVo h¢Ÿ& H$åß`yQ>a H$m AmÝV[aH$ n[anW Xmo
                    puter is built  with two-state  devices.  For  ex-  AdñWm dmbr `w{º$`m| H$m ~Zm hmoVm h¡Ÿ& O¡go, H$åß`yQ>a _|
                    ample, electronic circuit inside  the computer  Omo BboŠQ´>m°{ZH$ n[anW hmoVo h¢, BZ_| Xmo Vah Ho$ dmoëQ>oO
                    has two states; a high voltage and low voltage.  hmoVo h¢, EH$ CÀM dmoëQ>oO VWm EH$ {ZåZ dmoëQ>oO hmoVm h¡Ÿ&
                    The voltage levels may depend up on type of  CÀM d {ZåZ dmoëQ>oO Ho$ {d{^Þ ñVa hmo gH$Vo h¢ Omo {H$
                    the circuit. For example +5 volts may represent  n[anW Ho$ àH$ma na {Z^©a H$aVo h¢Ÿ& CXmhaUV… + 5V H$mo
                    high and 0 volts may represent low. Since these  CÀM (1) H$h gH$Vo h¢ VWm 0 Volt H$mo {ZåZ (0) H$h gH$Vo
                    circuits work similar to logical statements, there-  h¢Ÿ& My±{H$ `h n[anW Vm{H©$H$ H$WZm| Ho$ g_mZ H$m`© H$aVo
                    fore these are called logic circuits.       h¢ Bgr{bE BÝh| Vm{H©$H$ n[anW H$hVo h¢Ÿ&

                    3.35 Logic Gates                            3.35 bm°{OH$ JoQ>
                        Logic gates are the fundamental building    cm°{OH$ JoQ> H$åß`yQ>a Ho$ n[anW Ho$ _yb^yV IÊS>
                    blocks of computer circuit. These are used to  hmoVo h¢Ÿ&  Xr JB©  OmZH$mar  na {d{^Þ  {H«$`mE± BZH$s
                    manipulate the binary information. Logic gates  ghm`Vm go hr gånÞ H$s OmVr h¢Ÿ& BZ_| EH$ `m EH$ go
                    may have  one  or  more inputs  but only one  Á`mXm BZnwQ> hmo gH$Vo h¢ naÝVw AmCQ>nwQ> EH$ hr hmoVm
                    output.  The output  of  a Gate may be 1 or  0  h¡Ÿ& BZnwQ> Ho$ {d{^Þ _mZm| Ho$ {bE AmCQ>nwQ> eyÝ` `m EH$
                    depending upon  the input  values. Each Gate  hmo gH$Vm h¢Ÿ& àË`oH$ JoQ> H$m EH$ g§Ho$V hmoVm h¡Ÿ& àË`oH$
                    has a symbol.  The operation of Gate  can be  JoQ> Ho$ Ûmam H$s OmZo dmbr {H«$`m H$mo EH$ g_rH$aU Ûmam
                    represented by an equation. This equation is  Xem©`m Om gH$Vm h¡Ÿ& Bg g_rH$aU H$mo ~y{b`Z ì`§OH$
                    called Boolean expression. A table is commonly  H$hVo h¢Ÿ& àË`oH$ JoQ> Ho$ gå~ÝY _| EH$ Vm{bH$m ~ZmB©
                    drawn which provides the relationship between  OmVr h¡, {Og_| BZnwQ> Ho$ {d{^Þ _mZm| Ho$ {bE AmCQ>nwQ>
                    inputs and output  of the  gate. This table is  H$m _mZ Xem©`m OmVm h¡Ÿ& Bg Vm{bH$m H$mo gË` Vm{bH$m
                    called Truth Table.                         H$hVo h¢Ÿ&

                    3.36 Basic Gates (Fundamental Gates)        3.36 _yb^yV JoQ>
                        Basic Gates are the  logic  gates with  the  _yc^yV JoQ> do JoQ> hmoVo h¢ {OZH$s ghm`Vm go ~mH$s
                    help of which all other gates are made. Any  gmao JoQ>m| H$mo ~Zm`m Om gH$Vm h¡Ÿ& {H$gr ^r ~y{b`Z
                    Boolean expression can be implemented using
                    fundamental gates. Three  basic gates are   ì`§OH$ H$mo _yb^yV JoQ>m| H$s ghm`Vm go {H«$`mpÝdV {H$`m
                    commonly used  in the digital  computer     Om gH$Vm h¡Ÿ& AmYw{ZH$ {S>{OQ>b H$åß`yQ>a _| VrZ _yb^yV
                    system:                                     JoQ>m| H$m Cn`moJ {H$`m OmVm h¡…
                        1. AND Gate                                 1. AND JoQ>

                        2. OR Gate                                  2. OR JoQ>
                        3. NOT Gate.                                3. NOT JoQ> Ÿ&
   284   285   286   287   288   289   290   291   292   293   294