Page 265 - J. C. Turner - History and Science of Knots
P. 265
A History of Topological Knot Theory 255
2. Y. Akatsu and M. Wadati, `Knot Invariants and the Critical Statistical
Systems', Journal of the Physical Society of Japan, 56 No. 3, (March
1987). 839-842.
3. Y. Akutsu and M. Wadati, `Exactly Solvable Models and New Link
Polynomials', Journal of the Physical Society of Japan, 56 No. 9, (Sep.
1987). 3039-3051.
4. Y. Akatsu, T. Deguchi and M. Wadati, `Exactly Solvable Models and
New Link Invariants. II. Link Polynomials for Closed 3-braids', Journal
of the Physical Society of Japan, 56 No. 10, (Oct. 1987). 3464-3479.
5. J. W. Alexander, `A Lemma on Systems of Knotted Curves', Proc. Nat.
Acad. Sci., 9 (1923). 93-95.
6. J. W. Alexander, `Topological Invariants for Knots and Links', Trans-
actions of the American Mathematical Society, 30 (1928). 275-306.
7. J. W. Alexander and G. B. Briggs, `On Types of Knotted Curves',
Annals of Mathematics, series 2, 28, (1928), 562-586.
8. B. Arnold, M. Au, C. Candy, K Erdener, J. Fan, R. Flynn, R.J. Muir,
D. Wu, J. Hoste, `Tabulating Alternating Knots through 14 Crossings',
Journal of Knot Theory and its Ramifications, 3, No.4, (1994), 433-438.
9. E. Artin, `Theorie der Zopfe', Abh. Mat. Sem. Univ. Hamburg, 4
(1925). 47-72.
10. E. Artin, `Theory of Braids', Annals of Mathematics 48, No. 1 (Jan-
uary, 1947).
11. M. Ascher, Ethnomathematics, (Pacific Grove 1991).
12. I. Bain, Celtic Knotwork, (London, 1986).
13. C. Bankwitz, `Uber die Torsionzahlen der Alternierende Knoten', Math-
ematische Anal en, 103, (1930). 145-161.
14. J. S. Birman, Braids, Links and Mapping Class Groups, Annals of
Mathematics Studies No.82, Princeton University Press 1975.
15. J. S. Birman, `New Points of View in Knot Theory', Bulletin of the
American Mathematical Society, 28, (April 1993). pp. 253-287.
16. J. S. Birman and X-S Lin, `Knot Polynomials and Vassiliev's Invariant',
Inventiones Mathematicae, (1993). 225-270.
17. J. S. Birman and H. Wenzl, `Braids, Link Polynomials and a New Al-
gebra', Transactions of the American Mathematical Society, 313 No.
1, (May 1989). 249-273.
18. O. Boeddicker, Beitrag zur Theorien des Winkels, Dissertation,
Gottingen (1876).
19. O. Boeddicker, Erweiterung der Gauss'schen Theorie der Verschlingun-
gen mit Anwenddungen in der Elektrodynamik, Stuttgart 1876.
20. H. Brunn, `Uber verknotete Kurven', Verhandlungen des Interna-
tionalen Matematiker-Kongress Zurich (1897). 256-259.
21. W. Burau, 'Ober Zopfgruppen and gleichsinnig verdrillte Verkettun-