Page 269 - J. C. Turner - History and Science of Knots
P. 269
A History of Topological Knot Theory 259
einen Knoten zu machen (Gerold & Comp., Vienna, 1881).
81. P. Stackel, Gauss als geometer, Carl Friedrich Gauss Werke 10, pt. 2,
sec. 4. Gesellschaft der wissenschaften in Gottingen (B. G. Teubner,
Leipzig, 1923). Also in Materialien fiir eine wissenschaftliche biogra-
phie von Gauss, compiled by F. Klein, M. Brendel and L. Schlesinger.
Nachrichten der K. Gesellschaft der Wissenschaft zu Gottingen (1917).
82. C. Strohecker, Why Knot? (Doctoral thesis, MIT 1991).
83. P.G. Tait, `On Knots; I, II and III.' Scientific Papers (I. London 1877-
85, 273-347: C. U. P. 1898).
84. P. G. Tait, `On Knots' Transactions of the Royal Society of Edinburgh,
IX, 237-246, 289-298, 306-317, 321-332, 338-342 (on links); also Cay-
ley, 363-366, 383-391; and Muir, 391, 392, 403, 405. (1876-1877).
85. M. B. Thistlethwaite, 'Kauffman's Polynomial and Alternating Links',
Topology, 27 No. 3, (1988). 311-318.
86. M. B. Thistlethwaite, `Knot Tabulations and Related Topics', Aspects
of Topology, London Math. Soc. Lecture Notes Series, No. 93 (Cam-
bridge Universities Press 1985).
87. W. Thompson, Philosophical Magazine 34, (July, 1867). pp. 15-24.
88. V. G. Turaev, `The Yang-Baxter Equation and Invariants of Links',
Inventiones Mathematicae, 92, (1988). pp. 527-553.
89. J. C. Turner, A Study of Knot-Graphs, D.Phil thesis, Department of
Mathematics, University of Waikato, New Zealand (March, 1984).
90. A. T. Vandermonde, `Remarques sur les problemes de situation',
Memoires de l'Acade'mie Royal Des Science (Paris, 1771). 566-574.
91. V. A. Vassiliev, `Cohomology of Knot Spaces', Theory of Singularities
and its Applications, Advances in Soviet Mathematics 1, ed. V. I.
Arnold, American Math. Soc. (1990).
92. A. H. Wallace, `Modifications and Cobounding Manifolds', Canadian
Journal of Mathematics, 12, (1960). 503-528.
93. H. Weith, Topologische Untersuchung der Kurven- Verschlingung, Inau-
gural Dissertation, Zurich (1876).
94. H. Wenzl, `Representations of Braid Groups and the Quantum Yang-
Baxter Equation', Pacific Journal of Mathematics, 145 No. 1, (1990).
153-180.
95. J. H. White, K. C. Millet and N. R. Cozzarelli, `Description of the
Topological Entanglement of DNA Catenanes and Knots by a Power-
ful Method involving Strand Passage and Recombination.' Journal of
Molecular Biology, 1987, 585-603.
96. E. Witten, `Quantum Field Theory and the Jones Polynomial', Com-
munications in Mathematical Physics, 121 No. 3, (1989). 351-399.
97. E. C. Zeeman, `Unknotting Spheres', Annals of Mathematics, 72 No.
2, (September 1960). 350-361.