Page 266 - J. C. Turner - History and Science of Knots
P. 266

256                     History and Science of Knots

                gen', Abh. Mat. Sem. Univ. Hamburg, 11 (1936). 179-186.
             22. G. Burde and H. Zieschang, Knots, (New York, 1985).
             23. J. H. Conway, `An Enumeration of Knots, Links and some of their alge-
                braic Properties', Computational Problems in Abstract Algebra, (Perg-
                amon Press, 1970). 329-357.
             24. P. R. Cromwell, `Celtic Knotwork: Mathematical Art', Mathematical
                Intelligencer 15 No. 1, (1993) 36-47.
             25. R. H. Crowell and R. H. Fox, Introduction to Knot Theory, (Springer
                Verlag, 1963).
             26. C. L. Day, Quipus and Witches' Knots, (University of Kansas Press,
                Lawrence, 1967).
             27. M. Dehn, Ober die Topologie des dreidimensionalen Raumes, Mathe-
                matische Annalen, 69, (1910), 137-168.
             28.. M. Dehn, Die beiden Kleeblattschlingen, Mathematische Annalen, 102,
                (1914), 402-413.
             29. M. Dehn and P. Heegaard, Encyklopedie der Mathematischen Wis-
                senschaft, III (Leipzig, 1907-1910). 207-213.
             30. F. Dingeldey, Topologische Studien ziber die aus ringformig geschlosse-
                nen Bdndern durch gewisse Schnitte erzeugbaren Gebilde (G. B. Teub-
                ner, Leipzig, 1890).
             31. G. W. Dunnington, Carl Friedrich Gauss: Titan of Science, (New York,
                1955).
             32. C. Ernst and D. W. Sumners, `The Growth of the Number of Prime
                Knots', Math. Proc. Camb. Phil. Soc., 102 (1987). 303-315.
             33. R. Fenn and C. Rourke, `Kirby's Calculus for Links', Topology, 18,
                (1979). 1-15.
            34. R. Fenn and C. Rourke, `Racks and Links in Codimension Two, Journal
                of Knot Theory and its Ramifications, 1, (1992). 343-406.
            35. R. H. Fox, `On the Complementary Domains of a Certain Pair of In-
                equivalent Knots', Indag. Math., 14, (1952). pp. 37-40.
            36. P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millet and A.
                Ocneanu, `A New Polynomial Invariant of Knots and Links', Bulletin of
                the American Mathematical Society, 12 No. 2, (April 1985). 239-246.
            37. F. A. Garside, `The Braid Group and other Groups', Quarterly Journal
                of Mathematics, 20, No. 2, (Oxford 1969). 235-254.
            38. C. F. Gauss, Werke, V, 605, VIII, 271-286.
            39. C. McA. Gordon, `Some Aspects of Classical Knot Theory', Knot The-
                ory (Lecture Notes in Mathematics No. 685, Springer Verlag, 1977).
                1-60.
            40. C. McA. Gordon and J. Luecke, `Knots are determined by Their Com-
                plements', Bulletin of the American Mathematical Society, 20, No. 1,
                (1989). 83-88.
   261   262   263   264   265   266   267   268   269   270   271