Page 302 - Buku Teks Digital Mate KSSM T5
P. 302

7.  (a)                                       3.    y = 4x – 5  (3, 7)    4.
                                             F                                              y = –3x + 4  (1, 1)
                                     D
                                                                       y > 4x – 5  (2, 4), (–2, 0)   y > –3x + 4  (–1, 8), (–0.5, 7)
                             A     C
                                           E
                                                                       y < 4x – 5  (0, –6), (4, 5)   y < –3x + 4  (–2, 3), (0, 1)
                                     B
                         (b)  3.08 km
                      8.  (a)   X                                     Praktis Kendiri 6.1c
                                 ●P  ●G
                                 ●D  ●J  ●A Y                       1.  (a)      y         (b)      y
                            Z    ●B  ●E  ●L  ●T                                                         1
                                                                                                        3
                               ●C  ●R ●N  ●F                                                          y = —x + 3
                                    ●H  ●M
                               ●K  ●I                                           O      x           3
                                                                                                     1
                         (b)  (i)  {C, R, K, I}                                –2    y = –2       y < —x + 3
                                                                                                     3
                            (ii) {P, G, D, C, R, K, I}                     y < –2              –3   O    3  x
                            (iii){E}
                      9.  (b)  (i)  RM1 080      (ii) 40                        y
                      10.  (a)  ketiga                   (b)  484                   (c)  13 068     (c)   x = 2    (d)  y  y = x + 2
                                                                                              y > x + 2  2
                      BAB 6 Ketaksamaan Linear Dalam Dua
                             Pemboleh Ubah                                      O   2   x        –2  O      x
                         Praktis Kendiri 6.1a                               x ≤ 2
                      1.  (a)  25x + 45y ≤ 250 atau 5x + 9y ≤ 50
                         (b)  2x + 1.5y ≤ 500 atau 4x + 3y ≤ 1 000     (e)        y       (f)        y
                         (c)  0.3x + 0.4y ≤ 50 atau 3x + 4y ≤ 500                                   3    y = x
                                                                              1
                         (d)  1.5x + 3.5y ≥ 120 atau 3x + 7y ≥ 240         y ≥ –   —x – 2        y ≥ x
                                                                              2
                                                                                        x                   x
                         Praktis Kendiri 6.1b                              – 4  –2  O           –3  O    3

                                                                                        1
                                                                                –2   y = –   —x – 2
                      1.   Rantau  y > —x – 2                                           2          –3
                                  2
                           y      3  y = —x – 2
                                       2
                                       3
                           1           (3, 1)
                                                                    2.  (a)     y (x = 0)    (b)     y
                                                 2
                                                                                                           1
                                          x    y = –x – 2  (1.5, –1)                                     y = —x
                                                                                                 1
                           O   1   2  3          3                                             y > —x      2
                            (1, –1)              2                         x ≤ 0                 2
                          –1      (1.5, –1)    y > –x – 2  (3, 1), (1, –1)                          1
                                                 3                                      x                   x
                                  (2, –2)        2                              O                   O   2
                          –2           (3, –2)    y < –x – 2   (2, –2), (3, –2)
                                                 3
                                  2
                           Rantau  y < —x – 2
                                  3
                                                                        (c)     y          (d)        y
                      2.         Rantau y > – –x + 2                                                    2y = x + 4
                                        1
                                        2
                                 y                                               x + y ≥ –3           2
                                6                                               O       x            O      x

                            (–3, 5)      (4, 5)                            –3                  – 4
                                4                                                               2y < x + 4
                                                                               –3
                                 2  (2, 1)                                          x + y = –3
                                                       1
                            (–3, 1)                 y = – –x + 2
                                               x       2                (e)     y         (f)        y
                         –4  –2  O  2   4   6                                                 2y + x = 2
                                                           1
                                                    Rantau y < – –x + 2
                               –2  (1, –2)                 2                    2                      2y + x ≥ 2
                                                                                                    1
                                                                                        x                    x
                            1
                         y = – –x + 2  (2, 1)                                   O   2               O   2
                            2
                            1
                         y > – –x + 2  (–3, 5),(4, 5)                      y ≤ –x + 2  y = –x + 2
                            2                                                                         Saiz sebenar
                            1
                         y < – –x + 2  (–3, 1), (1, –2)
                            2
                                                                                                            301
   297   298   299   300   301   302   303   304   305   306   307