Page 15 - MTK SMK 10 TO ALI 2.tif
P. 15

4                                  Matematika X SMK Kelompok: Penjualan dan Akuntansi
                      Keterangan:

                                                                                            2
                                                    1
                      •   Contoh bilangan imajiner  −  = biasanya dilambangkan dengan  i ,  − , dan
                          seterusnya.
                                                                                     a
                      •   Bilangan rasional adalah bilangan yang dapat dibentuk menjadi   dengan b  0
                                                                                     b
                                                                                          a
                      •   Bilangan irasional adalah bilangan yang tidak dapat dibentuk menjadi   atau
                                                                                          b
                          bilangan yang banyaknya desimal tidak terhingga.
                      •   Bilangan cacah adalah bilangan positif ditambah nol.
                      •   Bilangan prima adalah bilangan yang hanya mempunyai dua faktor.
                      •   Bilangan komposit adalah bilangan yang memiliki faktor lebih dari dua.
                      Contoh 1
                      Beberapa bilangan irasional, yaitu  2  = 1,42… ;  log 3 = 0, 477… ;   π = 3,14…. dll

                      Ada  bilangan yang  memiliki banyaknya desimal tak  terhingga, namun merupakan
                      bilangan rasional, yaitu bilangan desimal berulang.
                      Desimal berulang dinotasikan dengan tanda garis (bar) di atas angka yang berulang.
                      Contoh 2
                      Beberapa bilangan desimal berulang, yaitu:
                      0,666. . . .    =  ,0  6
                      2,363636. . . .       =  ,2  36
                      5,125252525. . . .  =  1,5  25
                      Untuk mengubah desimal berulang menjadi pecahan, gunakanlah cara berikut:
                      Berulang 1 penyebutnya 9, berulang 2 penyebutnya 99 dan seterusnya.

                      Contoh 3
                      Ubahlah bilangan desimal berulang di bawah ini menjadi pecahan.
                      a. 0,333333. . . .                         d.  0,022222. . . .
                      b. 0,777777. . . .                         e.  2,111111. . . .
                      c. 0,181818. . . .                         f.   0,549549. . . .

                      Jawab:
                                          3   1                                     2    1
                      a.  0,333333. . . .  =   =                 d. 0,022222. . . .  =   =
                                          9   3                                     90   45
                                           7                                          1
                      b.  0,777777. . . .  =                     e.  2,111111. . . .  = 2
                                           9                                          9
                                         18    2                                      549  61
                      c.  0,181818. . . .  =  =                  f.   0,549549. . . .  =  =
                                         99   11                                    999   111

                      2.  Operasi Penjumlahan dan Pengurangan

                      Sifat-sifat yang berlaku pada operasi penjumlahan yaitu:

                      •   Komutatif :        a + b = b + a

                              Misalkan  :10 + (-3)  = -3 +10
                                                       7    =    7
   10   11   12   13   14   15   16   17   18   19   20