Page 14 - Kekongruenan dan kesebangunan segitiga
P. 14

Sisi-sisi yang bersesuaian:              Sudut-sudut yang bersesuaian:


                           AB dan DE → AB = DE                      ∠A dan ∠D → m∠A = m∠D

                           BC dan EF → BC = EF                      ∠B dan ∠E → m∠B = m∠E


                           CA dan FD → CA = FD                      ∠C dan ∠F → m∠C = m∠F


                                                   atau dengan kata lain

                                                                    
                                                       =      =     = 1
                                                                    




                 Jika ∆ABC dan ∆DEF memenuhi syarat tersebut, maka ∆ABC dan ∆DEF kongruen,
                 dinotasikan  dengan ∆ABC  ≅  ∆DEF. Jika  ∆ABC  dan  ∆DEF  tidak  memenuhi  syarat

                 tersebut maka maka ∆ABC dan ∆DEF tidak kongruen, dinotasikan dengan ∆ABC ≇

                 ∆DEF.

                    Catatan:


                    Ketika menyatakan dua segitiga kongruen sebaiknya berdasarkan titik-titik sudut yang
                   bersesuaian dan berurutan, contohnya:









                  bukan ΔABC ≅ ΔEDF atau ΔABC ≅ ΔEFD atau yang lainnya.




                 Menguji Kekongruenan dua segitiga


                 Dua segitiga dikatakan kongruen jika memenuhi salah satu kondisi berikut ini:


                 1.  Ketiga  pasangan  sisi  yang  bersesuaian  sama  panjang.  Biasa  disebut  dengan
                     kriteria sisi – sisi – sisi.












                                                                                                             10
   9   10   11   12   13   14   15   16   17   18   19