Page 181 - 'Blast_Into_Math
P. 181

Blast into Math!                                 Analatic nummer theora: ants, ghosts and giants



               and this we can re-arrange to

                                                     Nm      1
                                                           >   − 1,
                                                       p


               and finally get


                                                         p   1
                                                   N>          − 1 .
                                                         m


               So, we are free to choose the giant number N ∈ N  to be any natural number

                                                         p   1
                                                   N>          − 1 .
                                                         m

               Then, since for all n ≥ N


                                                          N
                                                         p            1
                                           n      N
                                        |x| ≤|x| ≤            <              <,
                                                         q       1+ Nm/p
               we have proven that for any > 0, there exists N ∈ N  such that


                                                     n
                                                   |x| <,    ∀n> N.
               So, we have proven the second direction:


                                                                   n
                                                |x| < 1=⇒ lim x =0.
                                                             n→∞

                                                            ♥

               To prove whether or not a geometric series converges, we will use the Geometric Sequence Lemma and
               a mathematical telescope.



               Theorem 7.3.5 (Geometric Σ Theorem). Let x ∈ R, and define the geometric sequence

                                                       ∞             n
                                                  {x n } n=1 ,  x n = x .

               Then, if  |x| < 1, the geometric series converges and

                                                     ∞
                                                               x
                                                          n
                                                        x =         .
                                                              1 − x
                                                     n=1
               If  |x|≥ 1, the geometric series does not converge.





                                                           181
   176   177   178   179   180   181   182   183   184   185   186