Page 172 - Avian Virology: Current Research and Future Trends
P. 172

Infectious Bronchitis Virus |   165
          Anand, K., Palm, G.J., Mesters, J.R., Siddell, S.G., Ziebuhr, J., and Hilgenfeld,   transmission model for porcine epidemic diarrhea virus strain PC22A.
            R. (2002). Structure of coronavirus main proteinase reveals combination   MBio 7, e01451–15. https://doi.org/10.1128/mBio.01451-15
            of a chymotrypsin fold with an extra alpha-helical domain. EMBO J. 21,   Bechill, J., Chen, Z., Brewer, J.W., and Baker, S.C. (2008). Coronavirus
            3213–3224. https://doi.org/10.1093/emboj/cdf327       infection modulates the unfolded protein response and mediates
          Angelini, M.M., Akhlaghpour, M., Neuman, B.W., and Buchmeier, M.J.   sustained translational repression. J. Virol. 82, 4492–4501. https://doi.
            (2013). Severe acute respiratory syndrome coronavirus nonstructural   org/10.1128/JVI.00017-08
            proteins 3, 4, and 6 induce double-membrane vesicles. MBio 4, e00524–  Becker, M.M., Graham,  R.L., Donaldson, E.F.,  Rockx, B., Sims,  A.C.,
            13. https://doi.org/10.1128/mBio.00524-13             Sheahan, T., Pickles, R.J., Corti, D., Johnston, R.E., Baric, R.S.,  et al.
          Animas, S.B., Otsuki, K., Hanayama, M., Sanekata, T., and Tsubokura, M.   (2008). Synthetic recombinant bat SARS-like coronavirus is infectious
            (1994). Experimental infection with avian infectious bronchitis virus   in cultured cells and in mice. Proc. Natl. Acad. Sci. U.S.A. 105, 19944–
            (Kagoshima-34 strain) in chicks at different ages. J. Vet. Med. Sci. 56,   19949. https://doi.org/10.1073/pnas.0808116105
            443–447.                                            Becker, W.B., McIntosh, K., Dees, J.H., and Chanock, R.M. (1967).
          Ariaans, M.P., van de Haar, P.M., Hensen, E.J., and Vervelde, L. (2009).   Morphogenesis of avian infectious bronchitis virus and a related human
            Infectious bronchitis virus induces acute interferon-gamma production   virus (strain 229E). J. Virol. 1, 1019–1027.
            through polyclonal stimulation of chicken leukocytes. Virology  385,   Beese, L.S., and Steitz, T.A. (1991). Structural basis for the 3’-5′ exonuclease
            68–73. https://doi.org/10.1016/j.virol.2008.11.021    activity of escherichia coli DNA polymerase I: a two metal ion
          Armesto, M., Cavanagh, D., and Britton, P. (2009). The replicase gene   mechanism. EMBO J. 10, 25–33.
            of avian coronavirus infectious bronchitis virus is a determinant of   Belouzard, S., Chu, V.C., and Whittaker, G.R. (2009). Activation of the
            pathogenicity. PLOS ONE 4, e7384. https://doi.org/10.1371/journal.  SARS coronavirus spike protein via sequential proteolytic cleavage at
            pone.0007384                                          two distinct sites. Proc. Natl. Acad. Sci. U.S.A. 106, 5871–5876. https://
          Armstrong, J., Niemann, H., Smeekens, S., Rottier, P., and Warren, G. (1984).   doi.org/10.1073/pnas.0809524106
            Sequence and topology of a model intracellular membrane protein, E1   Belouzard,  S., Millet, J.K., Licitra,  B.N., and Whittaker,  G.R. (2012).
            glycoprotein, from a coronavirus. Nature 308, 751–752.  Mechanisms of coronavirus cell entry mediated by the viral spike protein.
          Asif, M., Lowenthal, J.W., Ford, M.E., Schat, K.A., Kimpton, W.G., and   Viruses 4, 1011–1033. https://doi.org/10.3390/v4061011
            Bean, A.G. (2007). Interleukin-6 expression after infectious bronchitis   Benedict, C.A., Norris, P.S., and Ware, C.F. (2002). To kill or be killed:
            virus infection in chickens. Viral Immunol. 20, 479–486. https://doi.  viral evasion of apoptosis. Nat. Immunol.  3, 1013–1018. https://doi.
            org/10.1089/vim.2006.0109                             org/10.1038/ni1102-1013
          Awad, F., Baylis, M., and Ganapathy, K. (2014). Detection of variant   Bengtong, P., Thomrongsuwannakij, T., and Chansiripornchai, N. (2013).
            infectious bronchitis viruses in broiler flocks in Libya. Int. J. Vet. Sci.   Inactivation of infectious bronchitis virus with various kinds of
            Med. 2, 78–82.                                        disinfectants. Thai J. Vet. Med. 43, 405–409.
          Awad, F., Forrester, A., Baylis, M., Lemiere, S., Ganapathy, K., Hussien, H.A.,   Bentley, K., Keep, S.M., Armesto, M., and Britton, P. (2013). Identification
            and Capua, I. (2015). Protection conferred by live infectious bronchitis   of a noncanonically transcribed subgenomic mRNA of infectious
            vaccine viruses against variant Middle East IS/885/00-like and   bronchitis virus and other gammacoronaviruses. J. Virol. 87, 2128–2136.
            IS/1494/06-like isolates in commercial broiler chicks. Vet. Rec. Open 2,   https://doi.org/10.1128/JVI.02967-12
            e000111. https://doi.org/10.1136/vetreco-2014-000111  Benyeda, Z., Mató, T., Süveges, T., Szabó, E., Kardi, V., Abonyi-Tóth, Z.,
          Babcock, A.A., Toft-Hansen, H., and Owens, T. (2008). Signalling through   Rusvai, M., and Palya, V. (2009). Comparison of the pathogenicity of
            MyD88 regulates leukocyte recruitment after brain injury. J. Immunol.   QX-like, M41 and 793/B infectious bronchitis strains from different
            181, 6481–6490.                                       pathological conditions. Avian Pathol.  38, 449–456. https://doi.
          Baliji, S., Cammer, S.A., Sobral, B., and Baker, S.C. (2009). Detection of   org/10.1080/03079450903349196
            nonstructural protein 6 in murine coronavirus-infected cells and analysis   Bezuidenhout, A., Mondal, S.P., and Buckles, E.L. (2011). Histopathological
            of the transmembrane topology by using bioinformatics and molecular   and immunohistochemical study of air sac lesions induced by two strains
            approaches. J. Virol.  83, 6957–6962. https://doi.org/10.1128/  of infectious bronchitis virus. J. Comp. Pathol. 145, 319–326. https://
            JVI.00254-09                                          doi.org/10.1016/j.jcpa.2011.01.011
          Bande, F., Arshad, S.S., Omar, A.R., Bejo, M.H., Abubakar, M.S., and   Bhardwaj, K., Sun, J., Holzenburg, A., Guarino, L.A., and Kao, C.C.
            Abba, Y. (2016). Pathogenesis and diagnostic approaches of avian   (2006). RNA recognition and cleavage by the SARS coronavirus
            infectious bronchitis. Adv. Virol.  2016, 4621659. https://doi.  endoribonuclease. J. Mol. Biol. 361, 243–256.
            org/10.1155/2016/4621659                            Bhattacharjee, P.S., Naylor, C.J., and Jones, R.C. (1994). A simple method
          Baranov, P.V., Henderson, C.M., Anderson, C.B., Gesteland, R.F., Atkins,   for immunofluorescence staining of tracheal organ cultures for the rapid
            J.F., and Howard, M.T. (2005). Programmed ribosomal frameshifting in   identification of infectious bronchitis virus. Avian Pathol. 23, 471–480.
            decoding the SARS-CoV genome. Virology 332, 498–510.  Bickerton, E., Maier, H.J., Stevenson-Leggett, P., Armesto, M., and Britton,
          Barber,  G.N.  (2011).  Innate  immune  DNA  sensing  pathways:  STING,   P. (2018). The S2 Subunit of Infectious Bronchitis Virus Beaudette Is a
            AIMII and the regulation of interferon production and inflammatory   Determinant of Cellular Tropism. J. Virol. 92, e01044–18.
            responses. Curr. Opin. Immunol. 23, 10–20. https://doi.org/10.1016/j.  Bijanzad, P., Momayez, R., Mohammad, H.B.F., Mohammad, H.H.,
            coi.2010.12.015                                       Mahmoodzadeh, M., Moghaddam, A.R.J., Kaboli, K., Azizpour, A., and
          Barber, M.R., Aldridge, J.R.,  Webster, R.G.,  and Magor,  K.E.  (2010).   Esharatabadi, F. (2013). Clinical evaluation of SPF chickens infected
            Association of RIG-I with innate immunity of ducks to influenza. Proc.   with 793/B serotype of Infectious Bronchitis virus. Eur. J. Exp. Biol. 3,
            Natl.  Acad.  Sci.  U.S.A.  107,  5913–5918.  https://doi.org/10.1073/  226-230.
            pnas.1001755107                                     Bisgaard, M. (1976). [The influence of infectious bronchitis virus on egg
          Barrette-Ng, I.H., Ng, K.K., Mark, B.L., Van Aken, D., Cherney, M.M.,   production, fertility, hatchability and mortality rate in chickens (author’s
            Garen, C., Kolodenko, Y., Gorbalenya, A.E., Snijder, E.J., and James, M.N.   transl).] Nord. Vet. Med. 28, 368–376.
            (2002). Structure of arterivirus nsp4. The smallest chymotrypsin-like   Boltz, D.A., Nakai, M., and Bahra, J.M. (2004). Avian infectious bronchitis
            proteinase with an alpha/beta C-terminal extension and alternate   virus: a possible cause of reduced fertility in the rooster. Avian Dis. 48,
            conformations of the oxyanion hole. J. Biol. Chem. 277, 39960–39966.   909–915. https://doi.org/10.1637/7192-040808R1
            https://doi.org/10.1074/jbc.M206978200              Bos,  E.C., Luytjes, W.,  van der Meulen,  H.V.,  Koerten, H.K., and  Spaan,
          Bayry, J., Goudar, M.S., Nighot, P.K., Kshirsagar, S.G., Ladman, B.S., Gelb, J.,   W.J. (1996). The production of recombinant infectious DI-particles of a
            Ghalsasi, G.R., and Kolte, G.N. (2005). Emergence of a nephropathogenic   murine coronavirus in the absence of helper virus. Virology 218, 52–60.
            avian infectious bronchitis virus with a novel genotype in India. J. Clin.   Boscarino, J.A., Logan, H.L., Lacny, J.J., and Gallagher, T.M. (2008). Envelope
            Microbiol. 43, 916–918.                               protein palmitoylations are crucial for murine coronavirus assembly. J.
          Beall, A., Yount, B., Lin, C.M., Hou, Y., Wang, Q., Saif, L., and Baric, R.   Virol. 82, 2989–2999. https://doi.org/10.1128/JVI.01906-07
            (2016). Characterization of a pathogenic full-length cDNA clone and   Bosch, B.J., van der Zee, R., de Haan, C.A., and Rottier, P.J. (2003). The
                                                                  coronavirus spike protein is a class I virus fusion protein: structural
   167   168   169   170   171   172   173   174   175   176   177