Page 175 - Avian Virology: Current Research and Future Trends
P. 175

168  |  Liu et al.
            severe acute respiratory syndrome coronavirus that lacks the E gene is   Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol.
            attenuated in vitro and in vivo. J. Virol. 81, 1701–1713.  Pathol. 35, 495–516.
          Deming,  D.J.,  and  Baris,  R.S.  (2008).  Genetics  and  reverse  genetics  of   Emmott,  E., Munday, D.,  Bickerton, E.,  Britton, P.,  Rodgers, M.A.,
            Nidovirales. In Nidovirales,  S. Perlman, T  Gallagher,  E.J.  Snijder,  eds   Whitehouse, A., Zhou, E.M., and Hiscox, J.A. (2013). The cellular
            (Asm Press, Washington DC), pp. 47–64.                 interactome of the coronavirus infectious bronchitis virus nucleocapsid
          Denison, M.R., Hughes, S.A., and Weiss, S.R. (1995). Identification   protein and functional implications for virus biology. J. Virol. 87, 9486–
            and characterization of a 65-kDa protein processed from the gene   9500. https://doi.org/10.1128/JVI.00321-13
            1 polyprotein of the murine coronavirus MHV-A59. Virology  207,   Escorcia, M., Jackwood, M.W., Lucio, B., Petrone, V.M., López, C., Fehervari,
            316–320.                                               T., and Téllez, G. (2000). Characterization of Mexican strains of avian
          Dent, S.D., Xia, D., Wastling, J.M., Neuman, B.W., Britton, P., and Maier, H.J.   infectious bronchitis isolated during 1997. Avian Dis. 44, 944–947.
            (2015). The proteome of the infectious bronchitis virus  Beau-R virion. J.   Fabricant, J. (1951). Studies on the diagnosis of Newcastle disease and
            Gen. Virol. 96, 3499–3506.                             infectious bronchitis. IV. The use of the serum neutralization test in the
          Deschesnes, R.G., Huot, J., Valerie, K., and Landry, J. (2001). Involvement   diagnosis of infectious bronchitis. Cornell Vet. 41, 68–80.
            of p38 in apoptosis-associated membrane blebbing and nuclear   Fabricant, J. (1998). The early history of infectious bronchitis. Avian Dis.
            condensation. Mol. Cell. Biol. 12, 1569–1582.          42, 648–650.
          Dever, T.E., Sripriya, R., McLachlin, J.R., Lu, J., Fabian, J.R., Kimball, S.R.,   Fan, H., Ooi, A., Tan, Y.W., Wang, S., Fang, S., Liu, D.X., and Lescar, J.
            and Miller, L.K. (1998). Disruption of cellular translational control by   (2005). The nucleocapsid protein of coronavirus infectious bronchitis
            a viral truncated eukaryotic translation initiation factor 2alpha kinase   virus: crystal structure of its N-terminal domain and multimerization
            homolog. Proc. Natl. Acad. Sci. U.S.A. 95, 4164–4169.  properties. Structure 13, 1859–1868.
          Dhama, K., Singh, S.D., Barathidasan, R., Desingu, P.A., Chakraborty, S.,   Fang, S., Chen, B., Tay, F.P., Ng, B.S., and Liu, D.X. (2007). An
            Tiwari, R., and Kumar, M.A. (2014). Emergence of avian infectious   arginine-to-proline  mutation in  a  domain  with  undefined  functions
            bronchitis virus and its variants need better diagnosis, prevention and   within the helicase protein (Nsp13) is lethal to the coronavirus infectious
            control strategies: a global perspective. Pak. J. Biol. Sci. 17, 751–767.  bronchitis virus in cultured cells. Virology 358, 136–147.
          Dhillon,  A.S.,  Hagan, S.,  Rath, O.,  and Kolch,  W.  (2007). MAP  kinase   Fang,  S.,  Shen,  H.,  Wang,  J.,  Tay,  F.P.,  and  Liu,  D.X.  (2010).  Functional
            signalling pathways in cancer. Oncogene 26, 3279–3290.  and genetic studies of the substrate specificity of coronavirus infectious
          Dhinakar R.G., and Jones R.C. (1997). Infectious bronchitis virus:   bronchitis virus 3C-like proteinase. J. Virol. 84, 7325–7336. https://doi.
            Immuno-pathogenesis of infection in the chicken. Avian Pathol.  26,   org/10.1128/JVI.02490-09
            677–706.                                            Fang, S., Xu, L., Huang, M., Qisheng Li, F., and Liu, D.X. (2013).
          Dhinakar Raj, G., and Jones, R.C. (1996). Protectotypic differentiation of   Identification of two ATR-dependent phosphorylation sites on
            avian infectious bronchitis viruses using an in vitro challenge model. Vet.   coronavirus nucleocapsid  protein  with  nonessential  functions  in viral
            Microbiol. 53, 239–252.                                replication and infectivity in cultured cells. Virology  444, 225–232.
          Diemer, C., Schneider, M., Seebach, J., Quaas, J., Frösner, G., Schätzl, H.M.,   https://doi.org/10.1016/j.virol.2013.06.014
            and Gilch, S. (2008). Cell type-specific cleavage of nucleocapsid protein   Fang, S.G., Shen, S., Tay, F.P., and Liu, D.X. (2005). Selection of and
            by effector caspases during SARS coronavirus infection. J. Mol. Biol. 376,   recombination between minor variants lead to the adaptation of an avian
            23–34.                                                 coronavirus to primate cells. Biochem. Biophys. Res. Commun.  336,
          Donaldson, E.F., Graham, R.L., Sims, A.C., Denison, M.R., and   417–423.
            Baric,  R.S. (2007).  Analysis of  murine hepatitis  virus strain A59   Fang, S.G., Shen, H., Wang, J., Tay, F.P., and Liu, D.X. (2008). Proteolytic
            temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical   processing of polyproteins 1a and 1ab between non-structural proteins
            role in polyprotein processing. J. Virol. 81, 7086–7098.  10 and 11/12 of Coronavirus infectious bronchitis virus is dispensable
          Donaldson, E.F., Yount, B., Sims, A.C., Burkett, S., Pickles, R.J., and Baric,   for viral replication in cultured cells. Virology 379, 175–180. https://doi.
            R.S. (2008). Systematic assembly of a full-length infectious clone of   org/10.1016/j.virol.2008.06.038
            human coronavirus NL63. J. Virol.  82, 11948–11957. https://doi.  Fehr, A.R., and Perlman, S. (2015). Coronaviruses: an overview of their
            org/10.1128/JVI.01804-08                               replication and pathogenesis. Methods Mol. Biol. 1282, 1–23. https://
          Ducatez, M.F., European Union COST Action FA1207. (2016).   doi.org/10.1007/978-1-4939-2438-7_1
            Recommendations  for  a  standardized  avian  coronavirus  (AvCoV)   Feng, J., Hu, Y., Ma, Z., Yu, Q., Zhao, J., Liu, X., and Zhang, G. (2012). Virulent
            nomenclature:  outcome  from discussions  within  the framework of   avian infectious bronchitis virus, People’s Republic of China. Emerging
            the European Union COST Action FA1207: ‘towards control of avian   Infect. Dis. 18, 1994–2001. https://doi.org/10.3201/eid1812.120552
            coronaviruses: strategies for vaccination, diagnosis and surveillance’.   Ferreira, H.L., Pilz, D., Mesquita, L.G., and Cardoso, T. (2003). Infectious
            Avian Pathol. 45, 602–603. https://doi.org/10.1080/03079457.2016.1  bronchitis virus replication in the chicken embryo related cell line. Avian
            211834                                                 Pathol. 32, 413–417. https://doi.org/10.1080/0307945031000121167
          Dulbecco, R., and Vogt, M. (1954). Plaque formation and isolation of pure   Fischer, F., Stegen, C.F., Masters, P.S., and Samsonoff, W.A. (1998). Analysis
            lines with poliomyelitis viruses. J. Exp. Med. 99, 167–182.  of constructed E gene mutants of mouse hepatitis virus confirms a pivotal
          Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., and Denison, M.R. (2007).   role for E protein in coronavirus assembly. J. Virol. 72, 7885–7894.
            High fidelity of murine hepatitis virus replication is decreased in nsp14   Fraga,  A.P.,  Balestrin,  E.,  Ikuta,  N.,  Fonseca,  A.S.,  Spilki,  F.R.,  Canal,
            exoribonuclease mutants. J. Virol. 81, 12135–12144.    C.W., and Lunge, V.R. (2013). Emergence of a new genotype of avian
          Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X.,   infectious bronchitis virus in Brazil. Avian Dis. 57, 225–232. https://doi.
            Scherbakova, S., Graham, R.L., Baric, R.S., Stockwell, T.B., et al. (2010).   org/10.1637/10346-090412-Reg.1
            Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is   Franklin, C.C., and Kraft, A.S. (1997). Conditional expression of the
            revealed by complete genome sequencing. PLOS Pathog. 6, e1000896.   mitogen-activated protein kinase (MAPK) phosphatase MKP-1
            https://doi.org/10.1371/journal.ppat.1000896           preferentially inhibits p38 MAPK and stress-activated protein kinase in
          Egloff, M.P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre,   U937 cells. J. Biol. Chem. 272, 16917–16923.
            H., Snijder, E.J., Gorbalenya, A.E., Cambillau, C., and Canard, B. (2004).   Franzo, G., Listorti, V., Naylor, C.J., Lupini, C., Laconi, A., Felice, V., Drigo,
            The severe acute respiratory syndrome-coronavirus replicative protein   M., Catelli, E., and Cecchinato, M. (2015). Molecular investigation of a
            nsp9 is a single-stranded RNA-binding subunit unique in the RNA   full-length genome of a Q1-like IBV strain isolated in Italy in 2013. Virus
            virus world. Proc. Natl. Acad. Sci. U.S.A. 101, 3792–3796. https://doi.  Res. 210, 77–80. https://doi.org/10.1016/j.virusres.2015.07.008
            org/10.1073/pnas.0307877101                         Fung, T.S., and Liu, D.X. (2017). Activation of the c-Jun NH2-terminal
          Eléouët, J.F., Slee, E.A., Saurini, F., Castagné, N., Poncet, D., Garrido, C.,   kinase  pathway by  coronavirus  infectious  bronchitis virus promotes
            Solary, E., and Martin, S.J. (2000). The viral nucleocapsid protein of   apoptosis independently of c-Jun. Cell Death Dis. 8, 3215. https://doi.
            transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6   org/10.1038/s41419-017-0053-0
            and -7 during TGEV-induced apoptosis. J. Virol. 74, 3975–3983.  Fung, T.S., and Liu, D.X. (2018). Post-translational modifications of
                                                                   coronavirus proteins: roles and function. Future Virology 13, 405–430.
   170   171   172   173   174   175   176   177   178   179   180