Page 175 - Avian Virology: Current Research and Future Trends
P. 175
168 | Liu et al.
severe acute respiratory syndrome coronavirus that lacks the E gene is Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol.
attenuated in vitro and in vivo. J. Virol. 81, 1701–1713. Pathol. 35, 495–516.
Deming, D.J., and Baris, R.S. (2008). Genetics and reverse genetics of Emmott, E., Munday, D., Bickerton, E., Britton, P., Rodgers, M.A.,
Nidovirales. In Nidovirales, S. Perlman, T Gallagher, E.J. Snijder, eds Whitehouse, A., Zhou, E.M., and Hiscox, J.A. (2013). The cellular
(Asm Press, Washington DC), pp. 47–64. interactome of the coronavirus infectious bronchitis virus nucleocapsid
Denison, M.R., Hughes, S.A., and Weiss, S.R. (1995). Identification protein and functional implications for virus biology. J. Virol. 87, 9486–
and characterization of a 65-kDa protein processed from the gene 9500. https://doi.org/10.1128/JVI.00321-13
1 polyprotein of the murine coronavirus MHV-A59. Virology 207, Escorcia, M., Jackwood, M.W., Lucio, B., Petrone, V.M., López, C., Fehervari,
316–320. T., and Téllez, G. (2000). Characterization of Mexican strains of avian
Dent, S.D., Xia, D., Wastling, J.M., Neuman, B.W., Britton, P., and Maier, H.J. infectious bronchitis isolated during 1997. Avian Dis. 44, 944–947.
(2015). The proteome of the infectious bronchitis virus Beau-R virion. J. Fabricant, J. (1951). Studies on the diagnosis of Newcastle disease and
Gen. Virol. 96, 3499–3506. infectious bronchitis. IV. The use of the serum neutralization test in the
Deschesnes, R.G., Huot, J., Valerie, K., and Landry, J. (2001). Involvement diagnosis of infectious bronchitis. Cornell Vet. 41, 68–80.
of p38 in apoptosis-associated membrane blebbing and nuclear Fabricant, J. (1998). The early history of infectious bronchitis. Avian Dis.
condensation. Mol. Cell. Biol. 12, 1569–1582. 42, 648–650.
Dever, T.E., Sripriya, R., McLachlin, J.R., Lu, J., Fabian, J.R., Kimball, S.R., Fan, H., Ooi, A., Tan, Y.W., Wang, S., Fang, S., Liu, D.X., and Lescar, J.
and Miller, L.K. (1998). Disruption of cellular translational control by (2005). The nucleocapsid protein of coronavirus infectious bronchitis
a viral truncated eukaryotic translation initiation factor 2alpha kinase virus: crystal structure of its N-terminal domain and multimerization
homolog. Proc. Natl. Acad. Sci. U.S.A. 95, 4164–4169. properties. Structure 13, 1859–1868.
Dhama, K., Singh, S.D., Barathidasan, R., Desingu, P.A., Chakraborty, S., Fang, S., Chen, B., Tay, F.P., Ng, B.S., and Liu, D.X. (2007). An
Tiwari, R., and Kumar, M.A. (2014). Emergence of avian infectious arginine-to-proline mutation in a domain with undefined functions
bronchitis virus and its variants need better diagnosis, prevention and within the helicase protein (Nsp13) is lethal to the coronavirus infectious
control strategies: a global perspective. Pak. J. Biol. Sci. 17, 751–767. bronchitis virus in cultured cells. Virology 358, 136–147.
Dhillon, A.S., Hagan, S., Rath, O., and Kolch, W. (2007). MAP kinase Fang, S., Shen, H., Wang, J., Tay, F.P., and Liu, D.X. (2010). Functional
signalling pathways in cancer. Oncogene 26, 3279–3290. and genetic studies of the substrate specificity of coronavirus infectious
Dhinakar R.G., and Jones R.C. (1997). Infectious bronchitis virus: bronchitis virus 3C-like proteinase. J. Virol. 84, 7325–7336. https://doi.
Immuno-pathogenesis of infection in the chicken. Avian Pathol. 26, org/10.1128/JVI.02490-09
677–706. Fang, S., Xu, L., Huang, M., Qisheng Li, F., and Liu, D.X. (2013).
Dhinakar Raj, G., and Jones, R.C. (1996). Protectotypic differentiation of Identification of two ATR-dependent phosphorylation sites on
avian infectious bronchitis viruses using an in vitro challenge model. Vet. coronavirus nucleocapsid protein with nonessential functions in viral
Microbiol. 53, 239–252. replication and infectivity in cultured cells. Virology 444, 225–232.
Diemer, C., Schneider, M., Seebach, J., Quaas, J., Frösner, G., Schätzl, H.M., https://doi.org/10.1016/j.virol.2013.06.014
and Gilch, S. (2008). Cell type-specific cleavage of nucleocapsid protein Fang, S.G., Shen, S., Tay, F.P., and Liu, D.X. (2005). Selection of and
by effector caspases during SARS coronavirus infection. J. Mol. Biol. 376, recombination between minor variants lead to the adaptation of an avian
23–34. coronavirus to primate cells. Biochem. Biophys. Res. Commun. 336,
Donaldson, E.F., Graham, R.L., Sims, A.C., Denison, M.R., and 417–423.
Baric, R.S. (2007). Analysis of murine hepatitis virus strain A59 Fang, S.G., Shen, H., Wang, J., Tay, F.P., and Liu, D.X. (2008). Proteolytic
temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical processing of polyproteins 1a and 1ab between non-structural proteins
role in polyprotein processing. J. Virol. 81, 7086–7098. 10 and 11/12 of Coronavirus infectious bronchitis virus is dispensable
Donaldson, E.F., Yount, B., Sims, A.C., Burkett, S., Pickles, R.J., and Baric, for viral replication in cultured cells. Virology 379, 175–180. https://doi.
R.S. (2008). Systematic assembly of a full-length infectious clone of org/10.1016/j.virol.2008.06.038
human coronavirus NL63. J. Virol. 82, 11948–11957. https://doi. Fehr, A.R., and Perlman, S. (2015). Coronaviruses: an overview of their
org/10.1128/JVI.01804-08 replication and pathogenesis. Methods Mol. Biol. 1282, 1–23. https://
Ducatez, M.F., European Union COST Action FA1207. (2016). doi.org/10.1007/978-1-4939-2438-7_1
Recommendations for a standardized avian coronavirus (AvCoV) Feng, J., Hu, Y., Ma, Z., Yu, Q., Zhao, J., Liu, X., and Zhang, G. (2012). Virulent
nomenclature: outcome from discussions within the framework of avian infectious bronchitis virus, People’s Republic of China. Emerging
the European Union COST Action FA1207: ‘towards control of avian Infect. Dis. 18, 1994–2001. https://doi.org/10.3201/eid1812.120552
coronaviruses: strategies for vaccination, diagnosis and surveillance’. Ferreira, H.L., Pilz, D., Mesquita, L.G., and Cardoso, T. (2003). Infectious
Avian Pathol. 45, 602–603. https://doi.org/10.1080/03079457.2016.1 bronchitis virus replication in the chicken embryo related cell line. Avian
211834 Pathol. 32, 413–417. https://doi.org/10.1080/0307945031000121167
Dulbecco, R., and Vogt, M. (1954). Plaque formation and isolation of pure Fischer, F., Stegen, C.F., Masters, P.S., and Samsonoff, W.A. (1998). Analysis
lines with poliomyelitis viruses. J. Exp. Med. 99, 167–182. of constructed E gene mutants of mouse hepatitis virus confirms a pivotal
Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., and Denison, M.R. (2007). role for E protein in coronavirus assembly. J. Virol. 72, 7885–7894.
High fidelity of murine hepatitis virus replication is decreased in nsp14 Fraga, A.P., Balestrin, E., Ikuta, N., Fonseca, A.S., Spilki, F.R., Canal,
exoribonuclease mutants. J. Virol. 81, 12135–12144. C.W., and Lunge, V.R. (2013). Emergence of a new genotype of avian
Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., infectious bronchitis virus in Brazil. Avian Dis. 57, 225–232. https://doi.
Scherbakova, S., Graham, R.L., Baric, R.S., Stockwell, T.B., et al. (2010). org/10.1637/10346-090412-Reg.1
Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is Franklin, C.C., and Kraft, A.S. (1997). Conditional expression of the
revealed by complete genome sequencing. PLOS Pathog. 6, e1000896. mitogen-activated protein kinase (MAPK) phosphatase MKP-1
https://doi.org/10.1371/journal.ppat.1000896 preferentially inhibits p38 MAPK and stress-activated protein kinase in
Egloff, M.P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, U937 cells. J. Biol. Chem. 272, 16917–16923.
H., Snijder, E.J., Gorbalenya, A.E., Cambillau, C., and Canard, B. (2004). Franzo, G., Listorti, V., Naylor, C.J., Lupini, C., Laconi, A., Felice, V., Drigo,
The severe acute respiratory syndrome-coronavirus replicative protein M., Catelli, E., and Cecchinato, M. (2015). Molecular investigation of a
nsp9 is a single-stranded RNA-binding subunit unique in the RNA full-length genome of a Q1-like IBV strain isolated in Italy in 2013. Virus
virus world. Proc. Natl. Acad. Sci. U.S.A. 101, 3792–3796. https://doi. Res. 210, 77–80. https://doi.org/10.1016/j.virusres.2015.07.008
org/10.1073/pnas.0307877101 Fung, T.S., and Liu, D.X. (2017). Activation of the c-Jun NH2-terminal
Eléouët, J.F., Slee, E.A., Saurini, F., Castagné, N., Poncet, D., Garrido, C., kinase pathway by coronavirus infectious bronchitis virus promotes
Solary, E., and Martin, S.J. (2000). The viral nucleocapsid protein of apoptosis independently of c-Jun. Cell Death Dis. 8, 3215. https://doi.
transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 org/10.1038/s41419-017-0053-0
and -7 during TGEV-induced apoptosis. J. Virol. 74, 3975–3983. Fung, T.S., and Liu, D.X. (2018). Post-translational modifications of
coronavirus proteins: roles and function. Future Virology 13, 405–430.