Page 179 - Avian Virology: Current Research and Future Trends
P. 179

172  |  Liu et al.
            infectious bronchitis virus and determination of the C-terminal cleavage   Liu, S., Chen, J., Han, Z., Zhang, Q., Shao, Y., Kong, X., and Tong, G. (2006).
            site of an 87-kDa protein. Virology 245, 303–312.      Infectious bronchitis virus: S1 gene characteristics of vaccines used in
          Lim, K.P., and Liu, D.X. (1998b). Characterisation of a papain-like proteinase   China and efficacy of vaccination against heterologous strains from
            domain encoded by ORF1a of the coronavirus IBV and determination of   China. Avian Pathol. 35, 394–399.
            the C-terminal cleavage site of an 87 kDa protein. Adv. Exp. Med. Biol.   Liu, X., Shao, Y., Ma, H., Sun, C., Zhang, X., Li, C., Han, Z., Yan, B., Kong,
            440, 173–184.                                          X., and Liu, S. (2013). Comparative analysis of four Massachusetts type
          Lim, K.P., and Liu, D.X. (2001). The missing link in coronavirus assembly.   infectious bronchitis coronavirus genomes reveals a novel Massachusetts
            Retention of the avian coronavirus infectious bronchitis virus envelope   type strain and evidence of natural recombination in the genome. Infect.
            protein in the pre-Golgi compartments and physical interaction between   Genet. Evol. 14, 29–38. https://doi.org/10.1016/j.meegid.2012.09.016
            the envelope and membrane proteins. J. Biol. Chem. 276, 17515–17523.   Liu, Y., Shepherd, E.G., and Nelin, L.D. (2007). MAPK phosphatases –
            https://doi.org/10.1074/jbc.M009731200                 regulating the immune response. Nat. Rev. Immunol. 7, 202–212.
          Lim, K.P., Ng, L.F., and Liu, D.X. (2000). Identification of a novel cleavage   Lohr, J.E., Hinze, V., and Kaleta, E.F. (1991). Immunological relationship
            activity of the first papain-like proteinase domain encoded by open   between the New Zealand A and the Australian T strains of infectious
            reading frame 1a of the coronavirus Avian infectious bronchitis virus and   bronchitis virus as measured by cross-immunisation tests in tracheal
            characterization of the cleavage products. J. Virol. 74, 1674–1685.  organ cultures from immunised birds. N. Z. Vet. J. 39, 113–114. https://
          Lim, K.P., Xu, H.Y., and Liu, D.X. (2001). Physical interaction between   doi.org/10.1080/00480169.1991.35674
            the membrane (M) and envelope (E) proteins of the coronavirus avian   Lokugamage, K.G., Narayanan, K., Huang, C., and Makino, S. (2012). Severe
            infectious bronchitis virus (IBV). Adv. Exp. Med. Biol. 494, 595–602.  acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic
          Lim, T.H., Lee, H.J., Lee, D.H., Lee, Y.N., Park, J.K., Youn, H.N., Kim, M.S.,   translation inhibitor that represses multiple steps of translation initiation.
            Lee, J.B., Park, S.Y., Choi, I.S., et al. (2011). An emerging recombinant   J. Virol. 86, 13598–13608. https://doi.org/10.1128/JVI.01958-12
            cluster of nephropathogenic strains of avian infectious bronchitis virus   Lontok, E., Corse, E., and Machamer, C.E. (2004). Intracellular targeting
            in Korea. Infect. Genet. Evol. 11, 678–685. https://doi.org/10.1016/j.  signals contribute to localization of coronavirus spike proteins near the
            meegid.2011.01.007                                     virus assembly site. J. Virol. 78, 5913–5922. https://doi.org/10.1128/
          Lin, S.Y., Li, Y.T., Chen, Y.T., Chen, T.C., Hu, C.J., and Chen, H.W. (2016).   JVI.78.11.5913-5922.2004
            Identification of an infectious bronchitis coronavirus strain exhibiting   Lu, Y., Liu, D.X., and Tam, J.P. (2008). Lipid rafts are involved in SARS-CoV
            a classical genotype but altered antigenicity, pathogenicity, and innate   entry into Vero E6 cells. Biochem. Biophys. Res. Commun. 369, 344–
            immunity profile. Sci. Rep.  6, 37725. https://doi.org/10.1038/  349. https://doi.org/10.1016/j.bbrc.2008.02.023
            srep37725                                           Lutticken, D., Rijke, E.O., Loeffen, T., and Hesselink, W.G. (1988). Aspects
          Liu, C., Xu, H.Y., and Liu, D.X. (2001). Induction of caspase-dependent   of local immune response to IBV. In Proceedings of the 1st International
            apoptosis in cultured cells by the avian coronavirus infectious   Symposium on Infectious Bronchitis (Rauischholzhausen, Germany),
            bronchitis virus. J. Virol.  75, 6402–6409. https://doi.org/10.1128/  pp. 173–181.
            JVI.75.14.6402-6409.2001                            Luytjes, W., Gerritsma, H., Bos, E., and Spaan, W. (1997). Characterization
          Liu, D.X., and Inglis, S.C. (1991). Association of the infectious bronchitis   of two temperature-sensitive mutants of coronavirus mouse hepatitis
            virus 3c protein with the virion envelope. Virology 185, 911–917.  virus strain A59 with maturation defects in the spike protein. J. Virol. 71,
          Liu, D.X., and Inglis, S.C. (1992). Internal entry of ribosomes on a tricistronic   949–955.
            mRNA encoded by infectious bronchitis virus. J. Virol. 66, 6143–6154.  Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Yan, L., Zhang,
          Liu, D.X., Cavanagh, D., Green, P., and Inglis, S.C. (1991). A polycistronic   R., and Rao, Z. (2015). Structural basis and functional analysis of the
            mRNA specified by the coronavirus infectious bronchitis virus. Virology   SARS coronavirus nsp14-nsp10 complex. Proc. Natl. Acad. Sci. U.S.A.
            184, 531–544.                                          112, 9436–9441. https://doi.org/10.1073/pnas.1508686112
          Liu, D.X., Brierley, I., Tibbles, K.W., and Brown, T.D. (1994). A   Maassab, H.F. (1959). The propagation of multiple viruses in chick kidney
            100-kilodalton polypeptide encoded by open reading frame (ORF) 1b   cultures. Proc. Natl. Acad. Sci. U.S.A. 45, 1035–1039.
            of the coronavirus infectious bronchitis virus is processed by ORF 1a   Machamer, C.E., and Rose, J.K. (1987). A specific transmembrane domain
            products. J. Virol. 68, 5772–5780.                     of a coronavirus E1 glycoprotein is required for its retention in the Golgi
          Liu, D.X., Tibbles, K.W., Cavanagh, D, Brown, T.D.K., and Brierley, I.   region. J. Cell Biol. 105, 1205–1214.
            (1995a). Identification, expression and processing of an 87K polypeptide   Machamer, C.E., and Youn, S. (2006). The transmembrane domain
            encoded by ORF1a of the coronavirus infectious bronchitis virus.   of the  infectious bronchitis virus  E protein is  required for efficient
            Virology 208, 48–57.                                   virus release. Adv. Exp. Med. Biol.  581, 193–198. https://doi.
          Liu, D.X., Brierley, I., and Brown, T.D. (1995b). Identification of a trypsin-like   org/10.1007/978-0-387-33012-9_33
            serine proteinase domain encoded by ORF 1a of the coronavirus IBV.   Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P.,
            Adv. Exp. Med. Biol. 380, 405–411.                     Wileman, T., and Britton, P. (2013). Infectious bronchitis virus generates
          Liu, D.X., Tibbles, K.W., Cavanagh, D., Brown, T.D., and Brierley, I. (1995c).   spherules from zippered endoplasmic reticulum membranes. MBio 4,
            Involvement of viral and cellular factors in processing of polyprotein   e00801–13. https://doi.org/10.1128/mBio.00801-13
            encoded by ORF1a of the coronavirus IBV. Adv. Exp. Med. Biol. 380,   Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Self-eating
            413–421.                                               and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev.
          Liu, D.X., Xu, H.Y., and Brown, T.D. (1997). Proteolytic processing of the   Mol. Cell Biol. 8, 741–752.
            coronavirus infectious bronchitis virus 1a polyprotein: identification of   Marandino, A., Pereda, A., Tomás, G., Hernández, M., Iraola, G., Craig,
            a 10-kilodalton polypeptide and determination of its cleavage sites. J.   M.I., Hernández, D., Banda, A., Villegas, P., Panzera, Y., et al. (2015).
            Virol. 71, 1814–1820.                                  Phylodynamic analysis of avian infectious bronchitis virus in South
          Liu, D.X., Shen, S., Xu, H.Y., and Wang, S.F. (1998a). Proteolytic mapping   America. J. Gen. Virol. 96, 1340–1346.
            of the coronavirus infectious bronchitis virus 1b polyprotein: evidence   Martin, M.P., Wakenell, P.S., Woolcock, P., and O’Connor, B. (2007).
            for the presence of four cleavage sites of the 3C-like proteinase and   Evaluation of the effectiveness of two infectious bronchitis virus vaccine
            identification of two novel cleavage products. Virology 246, 288–297.  programs for preventing disease caused by a California IBV field isolate.
          Liu, D.X., Shen, S., Xu, H.Y., and Brown, T.D. (1998b). Proteolytic processing   Avian Dis. 51, 584–589. https://doi.org/10.1637/0005-2086(2007)51
            of the polyprotein encoded by ORF1b of the coronavirus infectious   [584:EOTEOT]2.0.CO;2
            bronchitis virus (IBV). Adv. Exp. Med. Biol. 440, 149–159.  Martinvalet, D., Zhu, P., and Lieberman, J. (2005). Granzyme A induces
          Liu, D.X., Xu, H.Y., and Lim, K.P. (1998c).  Regulation of mRNA1 expression   caspase-independent mitochondrial damage, a required first step for
            by the 5′untranslated region (5′-UTR) of the coronavirus infectious   apoptosis. Immunity 22, 355–370.
            bronchitis virus (IBV). Adv. Exp. Med. Biol. 440, 303–311.   McFerran, J.B., Cahill, H.T., Young, J.A., and Wright, C.L. (1971). Isolation
          Liu, D.X., Yuan, Q., and Liao, Y. (2007). Coronavirus envelope protein: a   of infectious bronchitis virus from newborn chicks and dead-in-shell
            small membrane protein with multiple functions. Cell. Mol. Life Sci. 64,   embryos. Vet. Rec. 89, 560–561.
            2043–2048. https://doi.org/10.1007/s00018-007-7103-1
   174   175   176   177   178   179   180   181   182   183   184