Page 179 - Avian Virology: Current Research and Future Trends
P. 179
172 | Liu et al.
infectious bronchitis virus and determination of the C-terminal cleavage Liu, S., Chen, J., Han, Z., Zhang, Q., Shao, Y., Kong, X., and Tong, G. (2006).
site of an 87-kDa protein. Virology 245, 303–312. Infectious bronchitis virus: S1 gene characteristics of vaccines used in
Lim, K.P., and Liu, D.X. (1998b). Characterisation of a papain-like proteinase China and efficacy of vaccination against heterologous strains from
domain encoded by ORF1a of the coronavirus IBV and determination of China. Avian Pathol. 35, 394–399.
the C-terminal cleavage site of an 87 kDa protein. Adv. Exp. Med. Biol. Liu, X., Shao, Y., Ma, H., Sun, C., Zhang, X., Li, C., Han, Z., Yan, B., Kong,
440, 173–184. X., and Liu, S. (2013). Comparative analysis of four Massachusetts type
Lim, K.P., and Liu, D.X. (2001). The missing link in coronavirus assembly. infectious bronchitis coronavirus genomes reveals a novel Massachusetts
Retention of the avian coronavirus infectious bronchitis virus envelope type strain and evidence of natural recombination in the genome. Infect.
protein in the pre-Golgi compartments and physical interaction between Genet. Evol. 14, 29–38. https://doi.org/10.1016/j.meegid.2012.09.016
the envelope and membrane proteins. J. Biol. Chem. 276, 17515–17523. Liu, Y., Shepherd, E.G., and Nelin, L.D. (2007). MAPK phosphatases –
https://doi.org/10.1074/jbc.M009731200 regulating the immune response. Nat. Rev. Immunol. 7, 202–212.
Lim, K.P., Ng, L.F., and Liu, D.X. (2000). Identification of a novel cleavage Lohr, J.E., Hinze, V., and Kaleta, E.F. (1991). Immunological relationship
activity of the first papain-like proteinase domain encoded by open between the New Zealand A and the Australian T strains of infectious
reading frame 1a of the coronavirus Avian infectious bronchitis virus and bronchitis virus as measured by cross-immunisation tests in tracheal
characterization of the cleavage products. J. Virol. 74, 1674–1685. organ cultures from immunised birds. N. Z. Vet. J. 39, 113–114. https://
Lim, K.P., Xu, H.Y., and Liu, D.X. (2001). Physical interaction between doi.org/10.1080/00480169.1991.35674
the membrane (M) and envelope (E) proteins of the coronavirus avian Lokugamage, K.G., Narayanan, K., Huang, C., and Makino, S. (2012). Severe
infectious bronchitis virus (IBV). Adv. Exp. Med. Biol. 494, 595–602. acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic
Lim, T.H., Lee, H.J., Lee, D.H., Lee, Y.N., Park, J.K., Youn, H.N., Kim, M.S., translation inhibitor that represses multiple steps of translation initiation.
Lee, J.B., Park, S.Y., Choi, I.S., et al. (2011). An emerging recombinant J. Virol. 86, 13598–13608. https://doi.org/10.1128/JVI.01958-12
cluster of nephropathogenic strains of avian infectious bronchitis virus Lontok, E., Corse, E., and Machamer, C.E. (2004). Intracellular targeting
in Korea. Infect. Genet. Evol. 11, 678–685. https://doi.org/10.1016/j. signals contribute to localization of coronavirus spike proteins near the
meegid.2011.01.007 virus assembly site. J. Virol. 78, 5913–5922. https://doi.org/10.1128/
Lin, S.Y., Li, Y.T., Chen, Y.T., Chen, T.C., Hu, C.J., and Chen, H.W. (2016). JVI.78.11.5913-5922.2004
Identification of an infectious bronchitis coronavirus strain exhibiting Lu, Y., Liu, D.X., and Tam, J.P. (2008). Lipid rafts are involved in SARS-CoV
a classical genotype but altered antigenicity, pathogenicity, and innate entry into Vero E6 cells. Biochem. Biophys. Res. Commun. 369, 344–
immunity profile. Sci. Rep. 6, 37725. https://doi.org/10.1038/ 349. https://doi.org/10.1016/j.bbrc.2008.02.023
srep37725 Lutticken, D., Rijke, E.O., Loeffen, T., and Hesselink, W.G. (1988). Aspects
Liu, C., Xu, H.Y., and Liu, D.X. (2001). Induction of caspase-dependent of local immune response to IBV. In Proceedings of the 1st International
apoptosis in cultured cells by the avian coronavirus infectious Symposium on Infectious Bronchitis (Rauischholzhausen, Germany),
bronchitis virus. J. Virol. 75, 6402–6409. https://doi.org/10.1128/ pp. 173–181.
JVI.75.14.6402-6409.2001 Luytjes, W., Gerritsma, H., Bos, E., and Spaan, W. (1997). Characterization
Liu, D.X., and Inglis, S.C. (1991). Association of the infectious bronchitis of two temperature-sensitive mutants of coronavirus mouse hepatitis
virus 3c protein with the virion envelope. Virology 185, 911–917. virus strain A59 with maturation defects in the spike protein. J. Virol. 71,
Liu, D.X., and Inglis, S.C. (1992). Internal entry of ribosomes on a tricistronic 949–955.
mRNA encoded by infectious bronchitis virus. J. Virol. 66, 6143–6154. Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Yan, L., Zhang,
Liu, D.X., Cavanagh, D., Green, P., and Inglis, S.C. (1991). A polycistronic R., and Rao, Z. (2015). Structural basis and functional analysis of the
mRNA specified by the coronavirus infectious bronchitis virus. Virology SARS coronavirus nsp14-nsp10 complex. Proc. Natl. Acad. Sci. U.S.A.
184, 531–544. 112, 9436–9441. https://doi.org/10.1073/pnas.1508686112
Liu, D.X., Brierley, I., Tibbles, K.W., and Brown, T.D. (1994). A Maassab, H.F. (1959). The propagation of multiple viruses in chick kidney
100-kilodalton polypeptide encoded by open reading frame (ORF) 1b cultures. Proc. Natl. Acad. Sci. U.S.A. 45, 1035–1039.
of the coronavirus infectious bronchitis virus is processed by ORF 1a Machamer, C.E., and Rose, J.K. (1987). A specific transmembrane domain
products. J. Virol. 68, 5772–5780. of a coronavirus E1 glycoprotein is required for its retention in the Golgi
Liu, D.X., Tibbles, K.W., Cavanagh, D, Brown, T.D.K., and Brierley, I. region. J. Cell Biol. 105, 1205–1214.
(1995a). Identification, expression and processing of an 87K polypeptide Machamer, C.E., and Youn, S. (2006). The transmembrane domain
encoded by ORF1a of the coronavirus infectious bronchitis virus. of the infectious bronchitis virus E protein is required for efficient
Virology 208, 48–57. virus release. Adv. Exp. Med. Biol. 581, 193–198. https://doi.
Liu, D.X., Brierley, I., and Brown, T.D. (1995b). Identification of a trypsin-like org/10.1007/978-0-387-33012-9_33
serine proteinase domain encoded by ORF 1a of the coronavirus IBV. Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P.,
Adv. Exp. Med. Biol. 380, 405–411. Wileman, T., and Britton, P. (2013). Infectious bronchitis virus generates
Liu, D.X., Tibbles, K.W., Cavanagh, D., Brown, T.D., and Brierley, I. (1995c). spherules from zippered endoplasmic reticulum membranes. MBio 4,
Involvement of viral and cellular factors in processing of polyprotein e00801–13. https://doi.org/10.1128/mBio.00801-13
encoded by ORF1a of the coronavirus IBV. Adv. Exp. Med. Biol. 380, Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Self-eating
413–421. and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev.
Liu, D.X., Xu, H.Y., and Brown, T.D. (1997). Proteolytic processing of the Mol. Cell Biol. 8, 741–752.
coronavirus infectious bronchitis virus 1a polyprotein: identification of Marandino, A., Pereda, A., Tomás, G., Hernández, M., Iraola, G., Craig,
a 10-kilodalton polypeptide and determination of its cleavage sites. J. M.I., Hernández, D., Banda, A., Villegas, P., Panzera, Y., et al. (2015).
Virol. 71, 1814–1820. Phylodynamic analysis of avian infectious bronchitis virus in South
Liu, D.X., Shen, S., Xu, H.Y., and Wang, S.F. (1998a). Proteolytic mapping America. J. Gen. Virol. 96, 1340–1346.
of the coronavirus infectious bronchitis virus 1b polyprotein: evidence Martin, M.P., Wakenell, P.S., Woolcock, P., and O’Connor, B. (2007).
for the presence of four cleavage sites of the 3C-like proteinase and Evaluation of the effectiveness of two infectious bronchitis virus vaccine
identification of two novel cleavage products. Virology 246, 288–297. programs for preventing disease caused by a California IBV field isolate.
Liu, D.X., Shen, S., Xu, H.Y., and Brown, T.D. (1998b). Proteolytic processing Avian Dis. 51, 584–589. https://doi.org/10.1637/0005-2086(2007)51
of the polyprotein encoded by ORF1b of the coronavirus infectious [584:EOTEOT]2.0.CO;2
bronchitis virus (IBV). Adv. Exp. Med. Biol. 440, 149–159. Martinvalet, D., Zhu, P., and Lieberman, J. (2005). Granzyme A induces
Liu, D.X., Xu, H.Y., and Lim, K.P. (1998c). Regulation of mRNA1 expression caspase-independent mitochondrial damage, a required first step for
by the 5′untranslated region (5′-UTR) of the coronavirus infectious apoptosis. Immunity 22, 355–370.
bronchitis virus (IBV). Adv. Exp. Med. Biol. 440, 303–311. McFerran, J.B., Cahill, H.T., Young, J.A., and Wright, C.L. (1971). Isolation
Liu, D.X., Yuan, Q., and Liao, Y. (2007). Coronavirus envelope protein: a of infectious bronchitis virus from newborn chicks and dead-in-shell
small membrane protein with multiple functions. Cell. Mol. Life Sci. 64, embryos. Vet. Rec. 89, 560–561.
2043–2048. https://doi.org/10.1007/s00018-007-7103-1