Page 182 - Avian Virology: Current Research and Future Trends
P. 182
Infectious Bronchitis Virus | 175
al. (2013). Reverse genetics with a full-length infectious cDNA of the Song, C.S., Lee, Y.J., Kim, J.H., Sung, H.W., Lee, C.W., Izumiya, Y., Miyazawa,
Middle East respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. T., Jang, H.K., and Mikami, T. (1998). Epidemiological classification of
U.S.A. 110, 16157–16162. https://doi.org/10.1073/pnas.1311542110 infectious bronchitis virus isolated in Korea between 1986 and 1997. Avian
Senne, D.A. (2008). Virus propagation in embryonating eggs. In A Pathol. 27, 409–416. https://doi.org/10.1080/03079459808419360
Laboratory Manual for Isolation and Identification of Avian Pathogens, Spencer, K.A., Dee, M., Britton, P., and Hiscox, J.A. (2008). Role of
5th edn, L. Dufour-Zavala, D.E. Swayne, J.R. Glisson, J.E. Pearson, W.M. phosphorylation clusters in the biology of the coronavirus infectious
Reed, M.W. Jackwood and P.R. Woocock, eds (American Association of bronchitis virus nucleocapsid protein. Virology 370, 373–381.
Avian Pathologists, Jacksonville, FL), pp. 204–208. Steil, B.P., Kempf, B.J., and Barton, D.J. (2010). Poly(A) at the 3’ end
Seo, S.H., Pei, J., Briles, W.E., Dzielawa, J., and Collisson, E.W. (2000). of positive-strand RNA and VPg-linked poly(U) at the 5′ end of
Adoptive transfer of infectious bronchitis virus primed alphabeta T-cells negative-strand RNA are reciprocal templates during replication of
bearing CD8 antigen protects chicks from acute infection. Virology 269, poliovirus RNA. J. Virol. 84, 2843–2858. https://doi.org/10.1128/
183–189. https://doi.org/10.1006/viro.2000.0211 JVI.02620-08
Sethna, P.B., Hofmann, M.A., and Brian, D.A. (1991). Minus-strand copies Stennicke, H.R., Ryan, C.A., and Salvesen, G.S. (2002). Reprieval from
of replicating coronavirus mRNAs contain antileaders. J. Virol. 65, execution: the molecular basis of caspase inhibition. Trends Biochem.
320–325. Sci. 27, 94–101.
Seybert, A., Posthuma, C.C., van Dinten, L.C., Snijder, E.J., Gorbalenya, A.E., Stern, D.F., Burgess, L., and Sefton, B.M. (1982). Structural analysis of virion
and Ziebuhr, J. (2005). A complex zinc finger controls the enzymatic proteins of the avian coronavirus infectious bronchitis virus. J. Virol. 42,
activities of nidovirus helicases. J. Virol. 79, 696–704. 208–219.
Shamsaddini-Bafti, M., Vasfi-Marandi, M., Momayez, R., Toroghi, R., St-Jean, J.R., Desforges, M., Almazán, F., Jacomy, H., Enjuanes, L., and
Pourbakhsh, S.A., Salari, R., and Tabrizchi, H. (2014). Detection of Talbot, P.J. (2006). Recovery of a neurovirulent human coronavirus
793/B serotype of infectious bronchitis virus in tissue sample by indirect OC43 from an infectious cDNA clone. J. Virol. 80, 3670–3674.
immunoperoxidase assay. Comp. Clin. Pathol. 23, 347–352. Stohlman, S.A., Baric, R.S., Nelson, G.N., Soe, L.H., Welter, L.M., and Deans,
Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., and R.J. (1988). Specific interaction between coronavirus leader RNA and
Li, F. (2018). Cryo-EM structure of infectious bronchitis coronavirus nucleocapsid protein. J. Virol. 62, 4288–4295.
spike protein reveals structural and functional evolution of coronavirus Stokes, H.L., Baliji, S., Hui, C.G., Sawicki, S.G., Baker, S.C., and Siddell, S.G.
spike proteins. PLOS Pathog. 14, e1007009. https://doi.org/10.1371/ (2010). A new cistron in the murine hepatitis virus replicase gene. J.
journal.ppat.1007009 Virol. 84, 10148–10158. https://doi.org/10.1128/JVI.00901-10
Shen, S., and Liu, D.X. (2001). Characterization of temperature-sensitive Sturman, L.S., Holmes, K.V., and Behnke, J. (1980). Isolation of coronavirus
(ts) mutants of coronavirus infectious bronchitis virus (IBV). Adv. Exp. envelope glycoproteins and interaction with the viral nucleocapsid. J.
Med. Biol. 494, 557–562. Virol. 33, 449–462.
Shen, S., Wen, Z.L., and Liu, D.X. (2003). Emergence of a coronavirus Su, D., Lou, Z., Sun, F., Zhai, Y., Yang, H., Zhang, R., Joachimiak, A., Zhang,
infectious bronchitis virus mutant with a truncated 3b gene: functional X.C., Bartlam, M., and Rao, Z. (2006). Dodecamer structure of severe
characterization of the 3b protein in pathogenesis and replication. acute respiratory syndrome coronavirus nonstructural protein nsp10. J.
Virology 311, 16–27. Virol. 80, 7902–7908.
Shen, S., Law, Y.C., and Liu, D.X. (2004). A single amino acid mutation in Su, M.C., Chang, C.T., Chu, C.H., Tsai, C.H., and Chang, K.Y. (2005). An
the spike protein of coronavirus infectious bronchitis virus hampers atypical RNA pseudoknot stimulator and an upstream attenuation signal
its maturation and incorporation into virions at the nonpermissive for -1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Res.
temperature. Virology 326, 288–298. https://doi.org/10.1016/j. 33, 4265–4275.
virol.2004.06.016 Sumi, V., Singh, S.D., Dhama, K., Gowthaman, V., Barathidasan, R., and
Shi, D., Shi, H., Sun, D., Chen, J., Zhang, X., Wang, X., Zhang, J., Ji, Z., Liu, Sukumar, K. (2012). Isolation and molecular characterization of
J., Cao, L., et al. (2017). Nucleocapsid interacts with npm1 and protects infectious bronchitis virus from recent outbreaks in broiler flocks
it from proteolytic cleavage, enhancing cell survival, and is involved in reveals emergence of novel strain in India. Trop. Anim. Health Prod. 44,
PEDV growth. Sci. Rep. 7, 39700. https://doi.org/10.1038/srep39700 1791–1795. https://doi.org/10.1007/s11250-012-0140-2.
Shi, J., Sivaraman, J., and Song, J. (2008). Mechanism for controlling the Survashe, B.D., Aitken, I.D., and Powell, J.R. (1979). The response of the
dimer-monomer switch and coupling dimerization to catalysis of the Harderian gland of the fowl to antigen given by the ocular route. I.
severe acute respiratory syndrome coronavirus 3C-like protease. J. Virol. Histological changes. Avian Pathol. 8, 77–93.
82, 4620–4629. https://doi.org/10.1128/JVI.02680-07 Sutton, G., Fry, E., Carter, L., Sainsbury, S., Walter, T., Nettleship, J., Berrow,
Shirato, K., Kawase, M., and Matsuyama, S. (2013). Middle East respiratory N., Owens, R., Gilbert, R., Davidson, A., et al. (2004). The nsp9 replicase
syndrome coronavirus infection mediated by the transmembrane protein of SARS-coronavirus, structure and functional insights. Structure
serine protease TMPRSS2. J. Virol. 87, 12552–12561. https://doi. 12, 341–353. https://doi.org/10.1016/j.str.2004.01.016.
org/10.1128/JVI.01890-13 Tabas, I., and Ron, D. (2011). Integrating the mechanisms of apoptosis
Siu, Y.L., Teoh, K.T., Lo, J., Chan, C.M., Kien, F., Escriou, N., Tsao, S.W., induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190.
Nicholls, J.M., Altmeyer, R., Peiris, J.S., et al. (2008). The M, E, and N https://doi.org/10.1038/ncb0311-184.
structural proteins of the severe acute respiratory syndrome coronavirus Tait, S.W., and Green, D.R. (2010). Mitochondria and cell death: outer
are required for efficient assembly, trafficking, and release of virus-like membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11,
particles. J. Virol. 82, 11318–11330. https://doi.org/10.1128/ 621–632. https://doi.org/10.1038/nrm2952.
JVI.01052-08 Tamura, R., Kanda, T., Imazeki, F., Wu, S., Nakamoto, S., Tanaka, T., Arai,
Smith, H.W., Cook, J.K., and Parsell, Z.E. (1985). The experimental M., Fujiwara, K., Saito, K., Roger, T., et al. (2011). Hepatitis C Virus
infection of chickens with mixtures of infectious bronchitis virus nonstructural 5A protein inhibits lipopolysaccharide-mediated apoptosis
and Escherichia coli. J. Gen. Virol. 66, 777–786. https://doi. of hepatocytes by decreasing expression of Toll-like receptor 4. J. Infect.
org/10.1099/0022-1317-66-4-777 Dis. 204, 793–801. https://doi.org/10.1093/infdis/jir381.
Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Tan, J., Verschueren, K.H., Anand, K., Shen, J., Yang, M., Xu, Y., Rao,
Guan, Y., Rozanov, M., Spaan, W.J., and Gorbalenya, A.E. (2003). Unique Z., Bigalke, J., Heisen, B., Mesters, J.R., et al. (2005). pH-dependent
and conserved features of genome and proteome of SARS-coronavirus, conformational flexibility of the SARS-CoV main proteinase (M(pro))
an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, dimer: molecular dynamics simulations and multiple X-ray structure
991–1004. analyses. J. Mol. Biol. 354, 25–40.
Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., Tan, Y.W., Fang, S., Fan, H., Lescar, J., and Liu, D.X. (2006). Amino acid
van der Meulen, J., Koerten, H.K., and Mommaas, A.M. (2006). residues critical for RNA-binding in the N-terminal domain of the
Ultrastructure and origin of membrane vesicles associated with the nucleocapsid protein are essential determinants for the infectivity of
severe acute respiratory syndrome coronavirus replication complex. J. coronavirus in cultured cells. Nucleic Acids Res. 34, 4816–4825.
Virol. 80, 5927–5940.