Page 182 - Avian Virology: Current Research and Future Trends
P. 182

Infectious Bronchitis Virus |   175
            al. (2013). Reverse genetics with a full-length infectious cDNA of the   Song, C.S., Lee, Y.J., Kim, J.H., Sung, H.W., Lee, C.W., Izumiya, Y., Miyazawa,
            Middle East respiratory syndrome coronavirus. Proc. Natl. Acad. Sci.   T., Jang, H.K., and Mikami, T. (1998). Epidemiological classification of
            U.S.A. 110, 16157–16162. https://doi.org/10.1073/pnas.1311542110  infectious bronchitis virus isolated in Korea between 1986 and 1997. Avian
          Senne, D.A. (2008). Virus propagation in embryonating eggs. In A   Pathol. 27, 409–416. https://doi.org/10.1080/03079459808419360
            Laboratory Manual for Isolation and Identification of Avian Pathogens,   Spencer, K.A., Dee, M., Britton, P., and Hiscox, J.A. (2008). Role of
            5th edn, L. Dufour-Zavala, D.E. Swayne, J.R. Glisson, J.E. Pearson, W.M.   phosphorylation clusters in the biology of the coronavirus infectious
            Reed, M.W. Jackwood and P.R. Woocock, eds (American Association of   bronchitis virus nucleocapsid protein. Virology 370, 373–381.
            Avian Pathologists, Jacksonville, FL), pp. 204–208.   Steil, B.P., Kempf, B.J., and Barton, D.J. (2010). Poly(A) at the 3’ end
          Seo,  S.H.,  Pei,  J.,  Briles,  W.E.,  Dzielawa,  J.,  and  Collisson,  E.W.  (2000).   of positive-strand RNA and VPg-linked poly(U) at the 5′ end of
            Adoptive transfer of infectious bronchitis virus primed alphabeta T-cells   negative-strand RNA are reciprocal templates during replication of
            bearing CD8 antigen protects chicks from acute infection. Virology 269,   poliovirus RNA. J. Virol.  84, 2843–2858. https://doi.org/10.1128/
            183–189. https://doi.org/10.1006/viro.2000.0211       JVI.02620-08
          Sethna, P.B., Hofmann, M.A., and Brian, D.A. (1991). Minus-strand copies   Stennicke,  H.R., Ryan,  C.A., and  Salvesen, G.S. (2002).  Reprieval  from
            of  replicating  coronavirus  mRNAs  contain  antileaders.  J.  Virol.  65,   execution: the molecular basis of caspase inhibition. Trends Biochem.
            320–325.                                              Sci. 27, 94–101.
          Seybert, A., Posthuma, C.C., van Dinten, L.C., Snijder, E.J., Gorbalenya, A.E.,   Stern, D.F., Burgess, L., and Sefton, B.M. (1982). Structural analysis of virion
            and Ziebuhr, J. (2005). A complex zinc finger controls the enzymatic   proteins of the avian coronavirus infectious bronchitis virus. J. Virol. 42,
            activities of nidovirus helicases. J. Virol. 79, 696–704.  208–219.
          Shamsaddini-Bafti,  M.,  Vasfi-Marandi,  M.,  Momayez,  R.,  Toroghi,  R.,   St-Jean, J.R., Desforges, M., Almazán, F., Jacomy, H., Enjuanes, L., and
            Pourbakhsh, S.A., Salari, R., and Tabrizchi, H. (2014). Detection of   Talbot, P.J. (2006). Recovery of a neurovirulent human coronavirus
            793/B serotype of infectious bronchitis virus in tissue sample by indirect   OC43 from an infectious cDNA clone. J. Virol. 80, 3670–3674.
            immunoperoxidase assay. Comp. Clin. Pathol. 23, 347–352.   Stohlman, S.A., Baric, R.S., Nelson, G.N., Soe, L.H., Welter, L.M., and Deans,
          Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., and   R.J. (1988). Specific interaction between coronavirus leader RNA and
            Li, F. (2018). Cryo-EM structure of infectious bronchitis coronavirus   nucleocapsid protein. J. Virol. 62, 4288–4295.
            spike protein reveals structural and functional evolution of coronavirus   Stokes, H.L., Baliji, S., Hui, C.G., Sawicki, S.G., Baker, S.C., and Siddell, S.G.
            spike proteins. PLOS Pathog. 14, e1007009. https://doi.org/10.1371/  (2010). A new cistron in the murine hepatitis virus replicase gene. J.
            journal.ppat.1007009                                  Virol. 84, 10148–10158. https://doi.org/10.1128/JVI.00901-10
          Shen, S., and Liu, D.X. (2001). Characterization of temperature-sensitive   Sturman, L.S., Holmes, K.V., and Behnke, J. (1980). Isolation of coronavirus
            (ts) mutants of coronavirus infectious bronchitis virus (IBV). Adv. Exp.   envelope glycoproteins and interaction with the viral nucleocapsid. J.
            Med. Biol. 494, 557–562.                              Virol. 33, 449–462.
          Shen, S., Wen, Z.L., and Liu, D.X. (2003). Emergence of a coronavirus   Su, D., Lou, Z., Sun, F., Zhai, Y., Yang, H., Zhang, R., Joachimiak, A., Zhang,
            infectious bronchitis virus mutant with a truncated 3b gene: functional   X.C., Bartlam, M., and Rao, Z. (2006). Dodecamer structure of severe
            characterization of the 3b protein in pathogenesis and replication.   acute respiratory syndrome coronavirus nonstructural protein nsp10. J.
            Virology 311, 16–27.                                  Virol. 80, 7902–7908.
          Shen, S., Law, Y.C., and Liu, D.X. (2004). A single amino acid mutation in   Su, M.C., Chang, C.T., Chu, C.H., Tsai, C.H., and Chang, K.Y. (2005). An
            the spike protein of coronavirus infectious bronchitis virus hampers   atypical RNA pseudoknot stimulator and an upstream attenuation signal
            its  maturation  and  incorporation  into  virions  at  the  nonpermissive   for -1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Res.
            temperature.  Virology  326,  288–298.  https://doi.org/10.1016/j.  33, 4265–4275.
            virol.2004.06.016                                   Sumi,  V.,  Singh,  S.D.,  Dhama,  K.,  Gowthaman,  V.,  Barathidasan,  R.,  and
          Shi, D., Shi, H., Sun, D., Chen, J., Zhang, X., Wang, X., Zhang, J., Ji, Z., Liu,   Sukumar, K. (2012). Isolation and molecular characterization of
            J., Cao, L., et al. (2017). Nucleocapsid interacts with npm1 and protects   infectious bronchitis virus from recent outbreaks in broiler flocks
            it from proteolytic cleavage, enhancing cell survival, and is involved in   reveals emergence of novel strain in India. Trop. Anim. Health Prod. 44,
            PEDV growth. Sci. Rep. 7, 39700. https://doi.org/10.1038/srep39700  1791–1795. https://doi.org/10.1007/s11250-012-0140-2.
          Shi, J., Sivaraman, J., and Song, J. (2008). Mechanism for controlling the   Survashe, B.D., Aitken, I.D., and Powell, J.R. (1979). The response of the
            dimer-monomer switch and coupling dimerization to catalysis of the   Harderian gland of the fowl to antigen given by the ocular route. I.
            severe acute respiratory syndrome coronavirus 3C-like protease. J. Virol.   Histological changes. Avian Pathol. 8, 77–93.
            82, 4620–4629. https://doi.org/10.1128/JVI.02680-07  Sutton, G., Fry, E., Carter, L., Sainsbury, S., Walter, T., Nettleship, J., Berrow,
          Shirato, K., Kawase, M., and Matsuyama, S. (2013). Middle East respiratory   N., Owens, R., Gilbert, R., Davidson, A., et al. (2004). The nsp9 replicase
            syndrome  coronavirus  infection  mediated  by  the  transmembrane   protein of SARS-coronavirus, structure and functional insights. Structure
            serine protease TMPRSS2. J. Virol.  87, 12552–12561. https://doi.  12, 341–353. https://doi.org/10.1016/j.str.2004.01.016.
            org/10.1128/JVI.01890-13                            Tabas,  I.,  and  Ron,  D.  (2011).  Integrating  the  mechanisms  of  apoptosis
          Siu, Y.L., Teoh, K.T., Lo, J., Chan, C.M., Kien, F., Escriou, N., Tsao, S.W.,   induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190.
            Nicholls, J.M., Altmeyer, R., Peiris, J.S., et al. (2008). The M, E, and N   https://doi.org/10.1038/ncb0311-184.
            structural proteins of the severe acute respiratory syndrome coronavirus   Tait, S.W., and Green, D.R. (2010). Mitochondria and cell death: outer
            are required for efficient assembly, trafficking, and release of virus-like   membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11,
            particles. J. Virol.  82, 11318–11330. https://doi.org/10.1128/  621–632. https://doi.org/10.1038/nrm2952.
            JVI.01052-08                                        Tamura, R., Kanda, T., Imazeki, F., Wu, S., Nakamoto, S., Tanaka, T., Arai,
          Smith,  H.W.,  Cook,  J.K.,  and  Parsell,  Z.E.  (1985).  The  experimental   M., Fujiwara, K., Saito, K., Roger, T., et al. (2011). Hepatitis C Virus
            infection of chickens with mixtures of infectious bronchitis virus   nonstructural 5A protein inhibits lipopolysaccharide-mediated apoptosis
            and Escherichia coli. J. Gen. Virol.  66, 777–786. https://doi.  of hepatocytes by decreasing expression of Toll-like receptor 4. J. Infect.
            org/10.1099/0022-1317-66-4-777                        Dis. 204, 793–801. https://doi.org/10.1093/infdis/jir381.
          Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L.,   Tan, J., Verschueren, K.H.,  Anand, K.,  Shen, J., Yang, M., Xu, Y., Rao,
            Guan, Y., Rozanov, M., Spaan, W.J., and Gorbalenya, A.E. (2003). Unique   Z., Bigalke,  J., Heisen, B.,  Mesters, J.R.,  et  al. (2005).  pH-dependent
            and conserved features of genome and proteome of SARS-coronavirus,   conformational flexibility of the SARS-CoV main proteinase (M(pro))
            an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331,   dimer:  molecular  dynamics  simulations  and  multiple  X-ray  structure
            991–1004.                                             analyses. J. Mol. Biol. 354, 25–40.
          Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J.,   Tan, Y.W., Fang, S., Fan, H., Lescar, J., and Liu, D.X. (2006). Amino acid
            van der Meulen, J., Koerten, H.K., and Mommaas, A.M. (2006).   residues critical for RNA-binding in the N-terminal domain of the
            Ultrastructure and origin of membrane vesicles associated with the   nucleocapsid protein are essential determinants for the infectivity of
            severe acute respiratory syndrome coronavirus replication complex. J.   coronavirus in cultured cells. Nucleic Acids Res. 34, 4816–4825.
            Virol. 80, 5927–5940.
   177   178   179   180   181   182   183   184   185   186   187