Page 184 - Avian Virology: Current Research and Future Trends
P. 184

Infectious Bronchitis Virus |   177
            particles protects against antibody-dependent complement-mediated   biochemical functions and drug design. Nucleic Acids Res. 31, 7117–
            lysis. J. Gen. Virol.  98, 2725–2730.  https://doi.org/10.1099/  7130.
            jgv.0.000962.                                       Yachida, S., Aoyama, S., Takahashi, N., Iritani, Y., and Katagiri, K. (1978).
          Wei, Y.Q., Guo, H.C., Dong, H., Wang, H.M., Xu, J., Sun, D.H., Fang, S.G., Cai,   Plastic multiwell plates to assay avian infectious bronchitis virus in organ
            X.P., Liu, D.X., and Sun, S.Q. (2014). Development and characterization   cultures of chicken embryo trachea. J. Clin. Microbiol. 8, 380–387.
            of a recombinant infectious bronchitis virus expressing the ectodomain   Yachida, S., Iritani, Y., and Katagiri, K. (1979). Effect of incubation
            region of S1 gene of H120 strain. Appl. Microbiol. Biotechnol.  98,   temperature on infectivity titration of mouse brain-passaged avian
            1727–1735. https://doi.org/10.1007/s00253-013-5352-5.  infectious  bronchitis  virus  in laboratory host systems.  Acta  Virol.  23,
          Welihinda, A.A., Tirasophon, W., and Kaufman, R.J. (1999). The cellular   398–402.
            response to protein misfolding in the endoplasmic reticulum. Gene Expr.   Yagyu,  K.,  and  Ohta,  S.  (1990).  Detection  of  infectious  bronchitis
            7, 293–300.                                           virus antigen from experimentally infected chickens by indirect
          Wesley, R.D., Woods, R.D., and Cheung, A.K. (1991). Genetic analysis of   immunofluorescent assay with monoclonal antibody. Avian Dis.  34,
            porcine respiratory coronavirus, an attenuated variant of transmissible   246–252.
            gastroenteritis virus. J. Virol. 65, 3369–3373.     Yamada, Y., and Liu, D.X. (2009). Proteolytic activation of the spike
          Westerbeck, J.W., and Machamer, C.E. (2015). A coronavirus E protein is   protein at a novel RRRR/S motif is implicated in furin-dependent entry,
            present in two distinct pools with different effects on assembly and the   syncytium formation, and infectivity of coronavirus infectious bronchitis
            secretory  pathway.  J.  Virol.  89,  9313–9323.  https://doi.org/10.1128/  virus in cultured cells. J. Virol. 83, 8744–8758. https://doi.org/10.1128/
            JVI.01237-15.                                         JVI.00613-09.
          White, J.M., and Whittaker, G.R. (2016). Fusion of enveloped viruses in   Yamada, Y., Liu, X.B., Fang, S.G., Tay, F.P., and Liu, D.X. (2009). Acquisition
            endosomes. Traffic 17, 593–614. https://doi.org/10.1111/tra.12389.  of cell-cell fusion activity by amino acid substitutions in spike protein
          Wickramasinghe, I.N., de Vries, R.P., Eggert, A.M., Wandee, N., de Haan,   determines the infectivity of a coronavirus in cultured cells. PLOS ONE
            C.A., Gröne, A., and Verheije, M.H. (2015). Host tissue and glycan   4, e6130. https://doi.org/10.1371/journal.pone.0006130.
            binding specificities of avian viral attachment proteins using novel avian   Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., and Chen, Z. (2014).
            tissue microarrays. PLOS ONE 10, e0128893. https://doi.org/10.1371/  Proteolytic  processing, deubiquitinase and  interferon  antagonist
            journal.pone.0128893.                                 activities of Middle East respiratory syndrome coronavirus papain-like
          Wilson, N.S., Dixit, V., and Ashkenazi, A. (2009). Death receptor signal   protease. J. Gen. Virol. 95, 614–626.
            transducers: nodes of coordination in immune signaling networks. Nat.   Yang, Z., and Klionsky, D.J. (2010). Eaten alive: a history of macroautophagy.
            Immunol. 10, 348–355. https://doi.org/10.1038/ni.1714.  Nat. Cell Biol. 12, 814–822. https://doi.org/10.1038/ncb0910-814.
          Winter, C., Schwegmann-Wessels, C., Cavanagh, D., Neumann, U., and   Ye, J., Rawson, R.B., Komuro, R., Chen, X., Davé, U.P., Prywes, R.,
            Herrler, G. (2006). Sialic acid is a receptor determinant for infection of   Brown, M.S., and Goldstein, J.L. (2000). ER stress induces cleavage of
            cells by avian Infectious bronchitis virus. J. Gen. Virol. 87, 1209–1216.   membrane-bound ATF6  by  the same proteases that process SREBPs.
          Winter, C., Herrler, G., and Neumann, U. (2008a). Infection of the   Mol. Cell 6, 1355–1364.
            tracheal epithelium by infectious bronchitis virus is sialic acid   Ye, Y., and Hogue, B.G. (2007). Role of the coronavirus E viroporin protein
            dependent. Microbes Infect.  10, 367–373.  https://doi.org/10.1016/j.  transmembrane domain in virus assembly. J. Virol. 81, 3597–3607.
            micinf.2007.12.009.                                 Ye, Y., Hauns, K., Langland, J.O., Jacobs, B.L., and Hogue, B.G. (2007).
          Winter, C., Schwegmann-Wessels, C., Neumann, U., and Herrler, G. (2008b).   Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I
            The spike protein of infectious bronchitis virus is retained intracellularly   interferon antagonist. J. Virol. 81, 2554–2563.
            by a tyrosine motif. J. Virol. 82, 2765–2771.       Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and
          Winterfield, R.W., and Albassam, M.A. (1984). Nephropathogenicity of   Tohyama, M. (2001). Activation of caspase-12, an endoplastic reticulum
            infectious bronchitis virus. Poult. Sci.  63, 2358–2363.  https://doi.  (ER) resident caspase, through tumor necrosis factor receptor-associated
            org/10.3382/ps.0632358.                               factor  2-dependent  mechanism  in  response  to  the  ER  stress.  J.  Biol.
          Wong, H.H., Kumar, P., Tay, F.P., Moreau, D., Liu, D.X., and Bard, F. (2015).   Chem. 276, 13935–13940. https://doi.org/10.1074/jbc.M010677200.
            Genome-wide screen reveals valosin-containing protein requirement for   Yoneyama, M., and Fujita, T. (2007). Function of RIG-I-like receptors in
            coronavirus exit from endosomes. J. Virol. 89, 11116–11128. https://  antiviral innate immunity. J. Biol. Chem. 282, 15315–15318.
            doi.org/10.1128/JVI.01360-15.                       Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998).
          Wong, S.K., Li, W., Moore, M.J., Choe, H., and Farzan, M. (2004). A   Identification  of  the  cis-acting  endoplasmic  reticulum  stress  response
            193-amino acid fragment of the SARS coronavirus S protein efficiently   element responsible for transcriptional induction of mammalian
            binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201.   glucose-regulated  proteins.  Involvement  of  basic  leucine  zipper
            https://doi.org/10.1074/jbc.C300520200.               transcription factors. J. Biol. Chem. 273, 33741–33749.
          Woo, P.C., Huang, Y., Lau, S.K., and Yuen, K.Y. (2010). Coronavirus   Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001).
            genomics and bioinformatics analysis. Viruses 2, 1804–1820. https://  XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER
            doi.org/10.3390/v2081803.                             stress to produce a highly active transcription factor. Cell 107, 881–891.
          Xiao, H., Xu, L.H., Yamada, Y., and Liu, D.X. (2008). Coronavirus spike   Yoshikawa, T., Hill, T.E., Yoshikawa, N., Popov, V.L., Galindo, C.L., Garner,
            protein inhibits host cell translation by interaction with eIF3f. PLOS   H.R., Peters, C.J., and Tseng, C.T. (2010). Dynamic innate immune
            ONE 3, e1494. https://doi.org/10.1371/journal.pone.0001494.  responses of human bronchial epithelial cells to severe acute respiratory
          Xu, G., Liu, X.Y., Zhao, Y., Chen, Y., Zhao, J., and Zhang, G.Z. (2016).   syndrome-associated  coronavirus  infection.  PLOS  ONE  5,  e8729.
            Characterization and analysis of an infectious bronchitis virus strain   https://doi.org/10.1371/journal.pone.0008729.
            isolated from southern China in 2013. Virol. J.  13, 40.  https://doi.  Youn, S., Leibowitz, J.L., and Collisson, E.W. (2005a). In vitro assembled,
            org/10.1186/s12985-016-0497-3.                        recombinant infectious bronchitis viruses demonstrate that the 5a open
          Xu, L., Khadijah, S., Fang, S., Wang, L., Tay, F.P., and Liu, D.X. (2010). The   reading frame is not essential for replication. Virology 332, 206–215.
            cellular RNA helicase DDX1 interacts with coronavirus nonstructural   Youn, S., Collisson, E.W., and Machamer, C.E. (2005b). Contribution of
            protein 14 and enhances viral replication. J. Virol.  84, 8571–8583.   trafficking signals in the cytoplasmic tail of the infectious bronchitis virus
            https://doi.org/10.1128/JVI.00392-10.                 spike protein to virus infection. J. Virol. 79, 13209–13217.
          Xu,  L.H.,  Huang, M.,  Fang,  S.G., and  Liu,  D.X.  (2011).  Coronavirus   Youngner, J.S. (1954). Monolayer tissue cultures. I. Preparation and
            infection induces DNA replication stress partly through interaction of   standardization  of  suspensions  of  trypsin-dispersed  monkey  kidney
            its nonstructural protein 13 with the p125 subunit of DNA polymerase   cells. Proc. Soc. Exp. Biol. Med. 85, 202–205.
            δ. J. Biol. Chem.  286, 39546–39559.  https://doi.org/10.1074/jbc.  Yount, B., Curtis, K.M., and Baric, R.S. (2000). Strategy for systematic
            M111.242206.                                          assembly of large RNA and DNA genomes: transmissible gastroenteritis
          Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S.G., and Ding, J. (2003).   virus model. J. Virol. 74, 10600–10611.
            Molecular  model  of SARS coronavirus polymerase: implications  for
   179   180   181   182   183   184   185   186   187   188   189