Page 184 - Avian Virology: Current Research and Future Trends
P. 184
Infectious Bronchitis Virus | 177
particles protects against antibody-dependent complement-mediated biochemical functions and drug design. Nucleic Acids Res. 31, 7117–
lysis. J. Gen. Virol. 98, 2725–2730. https://doi.org/10.1099/ 7130.
jgv.0.000962. Yachida, S., Aoyama, S., Takahashi, N., Iritani, Y., and Katagiri, K. (1978).
Wei, Y.Q., Guo, H.C., Dong, H., Wang, H.M., Xu, J., Sun, D.H., Fang, S.G., Cai, Plastic multiwell plates to assay avian infectious bronchitis virus in organ
X.P., Liu, D.X., and Sun, S.Q. (2014). Development and characterization cultures of chicken embryo trachea. J. Clin. Microbiol. 8, 380–387.
of a recombinant infectious bronchitis virus expressing the ectodomain Yachida, S., Iritani, Y., and Katagiri, K. (1979). Effect of incubation
region of S1 gene of H120 strain. Appl. Microbiol. Biotechnol. 98, temperature on infectivity titration of mouse brain-passaged avian
1727–1735. https://doi.org/10.1007/s00253-013-5352-5. infectious bronchitis virus in laboratory host systems. Acta Virol. 23,
Welihinda, A.A., Tirasophon, W., and Kaufman, R.J. (1999). The cellular 398–402.
response to protein misfolding in the endoplasmic reticulum. Gene Expr. Yagyu, K., and Ohta, S. (1990). Detection of infectious bronchitis
7, 293–300. virus antigen from experimentally infected chickens by indirect
Wesley, R.D., Woods, R.D., and Cheung, A.K. (1991). Genetic analysis of immunofluorescent assay with monoclonal antibody. Avian Dis. 34,
porcine respiratory coronavirus, an attenuated variant of transmissible 246–252.
gastroenteritis virus. J. Virol. 65, 3369–3373. Yamada, Y., and Liu, D.X. (2009). Proteolytic activation of the spike
Westerbeck, J.W., and Machamer, C.E. (2015). A coronavirus E protein is protein at a novel RRRR/S motif is implicated in furin-dependent entry,
present in two distinct pools with different effects on assembly and the syncytium formation, and infectivity of coronavirus infectious bronchitis
secretory pathway. J. Virol. 89, 9313–9323. https://doi.org/10.1128/ virus in cultured cells. J. Virol. 83, 8744–8758. https://doi.org/10.1128/
JVI.01237-15. JVI.00613-09.
White, J.M., and Whittaker, G.R. (2016). Fusion of enveloped viruses in Yamada, Y., Liu, X.B., Fang, S.G., Tay, F.P., and Liu, D.X. (2009). Acquisition
endosomes. Traffic 17, 593–614. https://doi.org/10.1111/tra.12389. of cell-cell fusion activity by amino acid substitutions in spike protein
Wickramasinghe, I.N., de Vries, R.P., Eggert, A.M., Wandee, N., de Haan, determines the infectivity of a coronavirus in cultured cells. PLOS ONE
C.A., Gröne, A., and Verheije, M.H. (2015). Host tissue and glycan 4, e6130. https://doi.org/10.1371/journal.pone.0006130.
binding specificities of avian viral attachment proteins using novel avian Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., and Chen, Z. (2014).
tissue microarrays. PLOS ONE 10, e0128893. https://doi.org/10.1371/ Proteolytic processing, deubiquitinase and interferon antagonist
journal.pone.0128893. activities of Middle East respiratory syndrome coronavirus papain-like
Wilson, N.S., Dixit, V., and Ashkenazi, A. (2009). Death receptor signal protease. J. Gen. Virol. 95, 614–626.
transducers: nodes of coordination in immune signaling networks. Nat. Yang, Z., and Klionsky, D.J. (2010). Eaten alive: a history of macroautophagy.
Immunol. 10, 348–355. https://doi.org/10.1038/ni.1714. Nat. Cell Biol. 12, 814–822. https://doi.org/10.1038/ncb0910-814.
Winter, C., Schwegmann-Wessels, C., Cavanagh, D., Neumann, U., and Ye, J., Rawson, R.B., Komuro, R., Chen, X., Davé, U.P., Prywes, R.,
Herrler, G. (2006). Sialic acid is a receptor determinant for infection of Brown, M.S., and Goldstein, J.L. (2000). ER stress induces cleavage of
cells by avian Infectious bronchitis virus. J. Gen. Virol. 87, 1209–1216. membrane-bound ATF6 by the same proteases that process SREBPs.
Winter, C., Herrler, G., and Neumann, U. (2008a). Infection of the Mol. Cell 6, 1355–1364.
tracheal epithelium by infectious bronchitis virus is sialic acid Ye, Y., and Hogue, B.G. (2007). Role of the coronavirus E viroporin protein
dependent. Microbes Infect. 10, 367–373. https://doi.org/10.1016/j. transmembrane domain in virus assembly. J. Virol. 81, 3597–3607.
micinf.2007.12.009. Ye, Y., Hauns, K., Langland, J.O., Jacobs, B.L., and Hogue, B.G. (2007).
Winter, C., Schwegmann-Wessels, C., Neumann, U., and Herrler, G. (2008b). Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I
The spike protein of infectious bronchitis virus is retained intracellularly interferon antagonist. J. Virol. 81, 2554–2563.
by a tyrosine motif. J. Virol. 82, 2765–2771. Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and
Winterfield, R.W., and Albassam, M.A. (1984). Nephropathogenicity of Tohyama, M. (2001). Activation of caspase-12, an endoplastic reticulum
infectious bronchitis virus. Poult. Sci. 63, 2358–2363. https://doi. (ER) resident caspase, through tumor necrosis factor receptor-associated
org/10.3382/ps.0632358. factor 2-dependent mechanism in response to the ER stress. J. Biol.
Wong, H.H., Kumar, P., Tay, F.P., Moreau, D., Liu, D.X., and Bard, F. (2015). Chem. 276, 13935–13940. https://doi.org/10.1074/jbc.M010677200.
Genome-wide screen reveals valosin-containing protein requirement for Yoneyama, M., and Fujita, T. (2007). Function of RIG-I-like receptors in
coronavirus exit from endosomes. J. Virol. 89, 11116–11128. https:// antiviral innate immunity. J. Biol. Chem. 282, 15315–15318.
doi.org/10.1128/JVI.01360-15. Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998).
Wong, S.K., Li, W., Moore, M.J., Choe, H., and Farzan, M. (2004). A Identification of the cis-acting endoplasmic reticulum stress response
193-amino acid fragment of the SARS coronavirus S protein efficiently element responsible for transcriptional induction of mammalian
binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201. glucose-regulated proteins. Involvement of basic leucine zipper
https://doi.org/10.1074/jbc.C300520200. transcription factors. J. Biol. Chem. 273, 33741–33749.
Woo, P.C., Huang, Y., Lau, S.K., and Yuen, K.Y. (2010). Coronavirus Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001).
genomics and bioinformatics analysis. Viruses 2, 1804–1820. https:// XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER
doi.org/10.3390/v2081803. stress to produce a highly active transcription factor. Cell 107, 881–891.
Xiao, H., Xu, L.H., Yamada, Y., and Liu, D.X. (2008). Coronavirus spike Yoshikawa, T., Hill, T.E., Yoshikawa, N., Popov, V.L., Galindo, C.L., Garner,
protein inhibits host cell translation by interaction with eIF3f. PLOS H.R., Peters, C.J., and Tseng, C.T. (2010). Dynamic innate immune
ONE 3, e1494. https://doi.org/10.1371/journal.pone.0001494. responses of human bronchial epithelial cells to severe acute respiratory
Xu, G., Liu, X.Y., Zhao, Y., Chen, Y., Zhao, J., and Zhang, G.Z. (2016). syndrome-associated coronavirus infection. PLOS ONE 5, e8729.
Characterization and analysis of an infectious bronchitis virus strain https://doi.org/10.1371/journal.pone.0008729.
isolated from southern China in 2013. Virol. J. 13, 40. https://doi. Youn, S., Leibowitz, J.L., and Collisson, E.W. (2005a). In vitro assembled,
org/10.1186/s12985-016-0497-3. recombinant infectious bronchitis viruses demonstrate that the 5a open
Xu, L., Khadijah, S., Fang, S., Wang, L., Tay, F.P., and Liu, D.X. (2010). The reading frame is not essential for replication. Virology 332, 206–215.
cellular RNA helicase DDX1 interacts with coronavirus nonstructural Youn, S., Collisson, E.W., and Machamer, C.E. (2005b). Contribution of
protein 14 and enhances viral replication. J. Virol. 84, 8571–8583. trafficking signals in the cytoplasmic tail of the infectious bronchitis virus
https://doi.org/10.1128/JVI.00392-10. spike protein to virus infection. J. Virol. 79, 13209–13217.
Xu, L.H., Huang, M., Fang, S.G., and Liu, D.X. (2011). Coronavirus Youngner, J.S. (1954). Monolayer tissue cultures. I. Preparation and
infection induces DNA replication stress partly through interaction of standardization of suspensions of trypsin-dispersed monkey kidney
its nonstructural protein 13 with the p125 subunit of DNA polymerase cells. Proc. Soc. Exp. Biol. Med. 85, 202–205.
δ. J. Biol. Chem. 286, 39546–39559. https://doi.org/10.1074/jbc. Yount, B., Curtis, K.M., and Baric, R.S. (2000). Strategy for systematic
M111.242206. assembly of large RNA and DNA genomes: transmissible gastroenteritis
Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S.G., and Ding, J. (2003). virus model. J. Virol. 74, 10600–10611.
Molecular model of SARS coronavirus polymerase: implications for