Page 183 - Avian Virology: Current Research and Future Trends
P. 183

176  |  Liu et al.
          Tan, Y.W., Hong, W., and Liu, D.X. (2012). Binding of the 5′-untranslated   Umar, S., Shah, M.A.A., Munir, M.T., Ahsan, U., and Kaboudi, K. (2016).
            region of coronavirus RNA to zinc finger CCHC-type and RNA-binding   Infectious bronchitis virus: evolution and vaccination. World Poult. Sci.
            motif 1 enhances viral replication and transcription. Nucleic Acids Res.   72, 49–60.
            40, 5065–5077. https://doi.org/10.1093/nar/gks165.  Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G.,
          Tan, Y.W., Fung, T.S., Shen, H., Huang, M., and Liu, D.X. (2018).   and Monne, I. (2016). S1 gene-based phylogeny of infectious bronchitis
            Coronavirus infectious bronchitis virus non-structural proteins 8 and 12   virus: An attempt to harmonize virus classification. Infect. Genet. Evol.
            form stable complex independent of the non-translated regions of viral   39, 349–364.
            RNA and other viral proteins. Virology 513, 75–84.  van Beurden, S.J., Berends, A.J., Krämer-Kühl, A., Spekreijse, D., Chenard,
          Tay,  F.P.,  Huang,  M.,  Wang,  L.,  Yamada,  Y.,  and  Liu,  D.X.  (2012).   G., Philipp, H.C., Mundt, E., Rottier, P.J.M., and Verheije, M.H. (2018).
            Characterization of cellular furin content as a potential factor determining   Recombinant live attenuated avian coronavirus vaccines with deletions in
            the susceptibility of cultured human and animal cells to coronavirus   the accessory genes 3ab and/or 5ab protect against infectious bronchitis
            infectious bronchitis virus infection. Virology 433, 421–430. https://  in chickens. Vaccine 36, 1085–1092.
            doi.org/10.1016/j.virol.2012.08.037.                van der Meer, Y., van Tol, H., Locker, J.K., and Snijder, E.J. (1998).
          Tekes, G., Hofmann-Lehmann, R., Stallkamp, I., Thiel, V., and Thiel, H.J.   ORF1a-encoded replicase subunits are involved in the membrane
            (2008). Genome organization and reverse genetic analysis of a type I   association of the arterivirus replication complex. J. Virol. 72, 6689–6698.
            feline coronavirus. J. Virol. 82, 1851–1859.        van Hamme, E., Dewerchin, H.L., Cornelissen, E., Verhasselt, B., and
          Teske, B.F., Wek, S.A., Bunpo, P., Cundiff, J.K., McClintick, J.N., Anthony,   Nauwynck, H.J. (2008). Clathrin- and caveolae-independent entry of
            T.G., and Wek, R.C. (2011). The eIF2 kinase PERK and the integrated   feline infectious peritonitis virus in monocytes depends on dynamin. J.
            stress response facilitate activation of ATF6 during endoplasmic   Gen. Virol. 89, 2147–2156.
            reticulum stress. Mol. Biol. Cell  22, 4390–4405. https://doi.  van Vliet, A.L., Smits, S.L., Rottier, P.J., and de Groot, R.J. (2002).
            org/10.1091/mbc.E11-06-0510.                           Discontinuous and non-discontinuous subgenomic RNA transcription
          Thayer, S.G., Nersessian, B.N., Rivetz, B., and Fletcher, O.J. (1987).   in a nidovirus. EMBO J. 21, 6571–6580.
            Comparison of serological tests for antibodies against Newcastle disease   Vennema, H., Godeke, G.J., Rossen, J.W., Voorhout, W.F., Horzinek, M.C.,
            virus and infectious bronchitis virus using ImmunoComb solid-phase   Opstelten,  D.J.,  and  Rottier,  P.J.  (1996).  Nucleocapsid-independent
            immunoassay, a commercial enzyme-linked immunosorbent assay, and   assembly of coronavirus-like particles by coexpression of viral envelope
            the hemagglutination-inhibition assay. Avian Dis. 31, 459–463.  protein genes. EMBO J. 15, 2020–2028.
          Thiel, V., Herold, J., Schelle, B., and Siddell, S.G. (2001). Infectious RNA   Verdiá-Báguena, C., Nieto-Torres, J.L., Alcaraz, A., DeDiego, M.L., Torres, J.,
            transcribed in vitro from a cDNA copy of the human coronavirus genome   Aguilella, V.M., and Enjuanes, L. (2012). Coronavirus E protein forms ion
            cloned in vaccinia virus. J. Gen. Virol. 82, 1273–1281.   channels with functionally and structurally-involved membrane lipids.
          Thompson, A.A., and Peersen, O.B. (2004). Structural basis for   Virology 432, 485–494. https://doi.org/10.1016/j.virol.2012.07.005.
            proteolysis-dependent activation of the poliovirus RNA-dependent   Versteeg, G.A., van de Nes, P.S., Bredenbeek, P.J., and Spaan, W.J. (2007).
            RNA polymerase. EMBO J. 23, 3462–3471. https://doi.org/10.1038/  The coronavirus spike protein induces endoplasmic reticulum stress and
            sj.emboj.7600357.                                      upregulation of intracellular chemokine mRNA concentrations. J. Virol.
          Thor, S.W., Hilt, D.A., Kissinger, J.C., Paterson, A.H., and Jackwood,   81, 10981–10990.
            M.W. (2011). Recombination in avian gamma-coronavirus infectious   Vervelde, L., Matthijs, M.G., van Haarlem, D.A., de Wit, J.J., and Jansen,
            bronchitis virus. Viruses  3, 1777–1799. https://doi.org/10.3390/  C.A. (2013). Rapid NK-cell activation in chicken after infection with
            v3091777.                                              infectious bronchitis virus M41. Vet. Immunol. Immunopathol.  151,
          To, J., Surya, W., Fung, T.S., Li, Y., Verdià-Bàguena, C., Queralt-Martin, M.,   337–341. https://doi.org/10.1016/j.vetimm.2012.11.012.
            Aguilella, V.M., Liu, D.X., and Torres, J. (2017). Channel-inactivating   Villarreal, L.Y. (2010). Diagnosis of infectious bronchitis: an overview of
            mutations and their revertant mutants in the envelope protein of   concepts and tools. Rev. Bras. Cienc. Avic. 12, 111–114.
            infectious bronchitis virus. J. Virol. 91, e02158–16.  Villarreal, L.Y., Brandão, P.E., Chacón, J.L., Assayag, M.S., Maiorka, P.C.,
          Toro,  H.,  and  Fernandez,  I.  (1994).  Avian  infectious  bronchitis:  specific   Raffi, P., Saidenberg, A.B., Jones, R.C., and Ferreira, A.J. (2007). Orchitis
            lachrymal IgA level and resistance against challenge. Zentralblatt    in roosters with reduced fertility associated with avian infectious
            Veterinarmedizin Reihe B 41, 467–472.                  bronchitis virus and avian metapneumovirus infections. Avian Dis. 51,
          Toro, H., Espinoza, C., Ponce, V., Rojas, V., Morales, M.A., and Kaleta, E.F.   900–904. https://doi.org/10.1637/7815-121306-REGR4.1.
            (1997). Infectious bronchitis: effect of viral doses and routes on specific   von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel, C.C., Zimmer,
            lacrimal and serum antibody responses in chickens. Avian Dis.  41,   R., Roberts, R., Baric, R., and Haas, J. (2007). Analysis of intraviral
            379–387.                                               protein-protein interactions of the SARS coronavirus ORFeome. PLOS
          Toro, H., van Santen, V.L., and Jackwood, M.W. (2012). Genetic diversity   ONE 2, e459. https://doi.org/10.1371/journal.pone.0000459.
            and selection regulates evolution of infectious bronchitis virus. Avian   Walsh, D., and Mohr, I. (2011). Viral subversion of the host protein synthesis
            Dis. 56, 449–455. https://doi.org/10.1637/10072-020212-Review.1.  machinery. Nat. Rev. Microbiol. 9, 860–875. https://doi.org/10.1038/
          Toro, H., van Santen, V.L., Ghetas, A.M., and Joiner, K.S. (2015).   nrmicro2655.
            Cross-protection by infectious bronchitis viruses under controlled   Wang, J., Fang, S., Xiao, H., Chen, B., Tam, J.P., and Liu, D.X. (2009).
            experimental conditions. Avian Dis.  59, 532–536. https://doi.  Interaction of the coronavirus infectious bronchitis virus membrane
            org/10.1637/11231-070615-Reg.1.                        protein with beta-actin and its implication in virion assembly and
          Torres, J., Parthasarathy, K., Lin, X., Saravanan, R., Kukol, A., and Liu, D.X.   budding. PLOS ONE  4, e4908.  https://doi.org/10.1371/journal.
            (2006). Model of a putative pore: the pentameric alpha-helical bundle   pone.0004908.
            of SARS coronavirus E protein in lipid bilayers. Biophys. J. 91, 938–947.  Wang, X., Rosa, A.J., Oliverira, H.N., Rosa, G.J., Guo, X., Travnicek, M.,
          Trevisol, I.M., Esteves, P.A., Schaefer, R., Jaenisch, F.R.F., Di Fabio, J., and   and Girshick, T. (2006). Transcriptome of local innate and adaptive
            Brentano, L. (2009). Associação entre o vírus da bronquite infecciosa   immunity during early phase of infectious bronchitis viral infection. Viral
            das galinhas e alterações da musculatura peitoral. Rev. Bras. Cienc. Avic.   Immunol. 19, 768–774. https://doi.org/10.1089/vim.2006.19.768.
            11.                                                 Wang, X., Liao, Y., Yap, P.L., Png, K.J., Tam, J.P., and Liu, D.X. (2009).
          Trinchieri, G., and Sher, A. (2007). Cooperation of toll-like receptor signals   Inhibition of protein kinase R activation and upregulation of GADD34
            in innate immune defence. Nat. Rev. Immunol. 7, 179–190.  expression play a synergistic role in facilitating coronavirus replication by
          Tsukamoto, Y., Kotani, T., Shiraishi, Y., Kawamura, H., and Sakuma, S.   maintaining de novo protein synthesis in virus-infected cells. J. Virol. 83,
            (1996). Epithelial cell proliferation of collecting ducts and ureters in   12462–12472. https://doi.org/10.1128/JVI.01546-09.
            the regenerating process of interstitial nephritis caused by infectious   Watters, T.M., Kenny, E.F., and O’Neill, L.A. (2007). Structure, function
            bronchitis virus. Avian Pathol. 25, 95–102.            and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol. Cell
          Tyrrell, D.A., and Bynoe, M.L. (1965). Cultivation of a novel type of   Biol. 85, 411–419.
            common-cold virus in organ cultures. Br. Med. J. 1, 1467–1470.   Wei, Y., Ji, Y., Guo, H., Zhi, X., Han, S., Zhang, Y., Gao, Y., Chang, Y., Yan, D.,
                                                                   Li, K., et al. (2017). CD59 association with infectious bronchitis virus
   178   179   180   181   182   183   184   185   186   187   188