Page 178 - Avian Virology: Current Research and Future Trends
P. 178
Infectious Bronchitis Virus | 171
Khataby, K., Souiri, A., Kasmi, Y., Loutfi, C., and Ennaji, M.M. (2016). glycoprotein ectodomain: crossing the host cell species barrier. J. Virol.
Current situation, genetic relationship and control measures of infectious 74, 1393–1406.
bronchitis virus variants circulating in African regions. J. Basic. Appl. Kvansakul, M., and Hinds, M.G. (2013). Structural biology of the Bcl-2
Zool. 76, 20–30. family and its mimicry by viral proteins. Cell Death Dis. 4, e909. https://
Kimura, S., Noda, T., and Yoshimori, T. (2007). Dissection of the doi.org/10.1038/cddis.2013.436
autophagosome maturation process by a novel reporter protein, tandem Laconi, A., van Beurden, S.J., Berends, A.J., Krämer-Kühl, A., Jansen, C.A.,
fluorescent-tagged LC3. Autophagy 3, 452–460. Spekreijse, D., Chénard, G., Philipp, H.C., Mundt, E., Rottier, P.J.M.,
King, D.J., and Hopkins, S.R. (1984). Rapid serotyping of infectious et al. (2018). Deletion of accessory genes 3a, 3b, 5a or 5b from avian
bronchitis virus isolates with the hemagglutination-inhibition test. Avian coronavirus infectious bronchitis virus induces an attenuated phenotype
Dis. 28, 727–733. both in vitro and in vivo. J. Gen. Virol. [Epub ahead of print]. https://doi.
Kingham, B.F., Keeler, C.L., Nix, W.A., Ladman, B.S., and Gelb, J. (2000). org/10.1099/jgv.0.001130
Identification of avian infectious bronchitis virus by direct automated Ladman, B.S., Pope, C.R., Ziegler, A.F., Swieczkowski, T., Callahan, C.J.,
cycle sequencing of the S-1 gene. Avian Dis. 44, 325–335. Davison, S., and Gelb, J. (2002). Protection of chickens after live and
Kint, J., Fernandez-Gutierrez, M., Maier, H.J., Britton, P., Langereis, M.A., inactivated virus vaccination against challenge with nephropathogenic
Koumans, J., Wiegertjes, G.F., and Forlenza, M. (2015). Activation of the infectious bronchitis virus PA/Wolgemuth/98. Avian Dis. 46, 938–944.
chicken type I interferon response by infectious bronchitis coronavirus. https://doi.org/10.1637/0005-2086(2002)046[0938:POCALA]2.0
J. Virol. 89, 1156–1167. https://doi.org/10.1128/JVI.02671-14 .CO;2
Kint, J., Langereis, M.A., Maier, H.J., Britton, P., van Kuppeveld, F.J., Lambrechts, C., Pensaert, M., and Ducatelle, R. (1993). Challenge
Koumans, J., Wiegertjes, G.F., and Forlenza, M. (2016). Infectious experiments to evaluate cross-protection induced at the trachea and
bronchitis coronavirus limits interferon production by inducing a host kidney level by vaccine strains and Belgian nephropathogenic isolates of
shutoff that requires accessory protein 5b. J. Virol. 90, 7519–7528. avian infectious bronchitis virus. Avian Pathol. 22, 577–590.
https://doi.org/10.1128/JVI.00627-16 Lang, R., Hammer, M., and Mages, J. (2006). DUSP meet immunology: dual
Klieve, A.V., and Cumming, R.B. (1990). Respiratory disease and immunity specificity MAPK phosphatases in control of the inflammatory response.
to challenge produced by Australian strains of infectious bronchitis virus. J. Immunol. 177, 7497–7504.
Avian Pathol. 19, 305–312. Lee, A.H., Iwakoshi, N.N., and Glimcher, L.H. (2003). XBP-1 regulates
Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., a subset of endoplasmic reticulum resident chaperone genes in the
Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, unfolded protein response. Mol. Cell. Biol. 23, 7448–7459.
K., et al. (2016). Guidelines for the use and interpretation of assays for Lee, C.W., and Jackwood, M.W. (2000). Evidence of genetic diversity
monitoring autophagy (3rd edition). Autophagy 12, 1–222. https://doi. generated by recombination among avian coronavirus IBV. Arch. Virol.
org/10.1080/15548627.2015.1100356 145, 2135–2148.
Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Lee, C.W., and Jackwood, M.W. (2001). Origin and evolution of Georgia 98
Meer, Y., Koster, A.J., Mommaas, A.M., and Snijder, E.J. (2008). (GA98), a new serotype of avian infectious bronchitis virus. Virus Res.
SARS-coronavirus replication is supported by a reticulovesicular 80, 33–39.
network of modified endoplasmic reticulum. PLOS Biol. 6, e226. Leibowitz, J.L., DeVries, J.R., and Haspel, M.V. (1982). Genetic analysis of
https://doi.org/10.1371/journal.pbio.0060226 murine hepatitis virus strain JHM. J. Virol. 42, 1080–1087.
Koch, G., Hartog, L., Kant, A., and van Roozelaar, D.J. (1990). Antigenic Levine, B., and Deretic, V. (2007). Unveiling the roles of autophagy in innate
domains on the peplomer protein of avian infectious bronchitis virus: and adaptive immunity. Nat. Rev. Immunol. 7, 767–777.
correlation with biological functions. J. Gen. Virol. 71, 1929–1935. Lewerenz, J., and Maher, P. (2009). Basal levels of eIF2alpha phosphorylation
https://doi.org/10.1099/0022-1317-71-9-1929 determine cellular antioxidant status by regulating ATF4 and xCT
Koetzner, C.A., Parker, M.M., Ricard, C.S., Sturman, L.S., and Masters, P.S. expression. J. Biol. Chem. 284, 1106–1115. https://doi.org/10.1074/
(1992). Repair and mutagenesis of the genome of a deletion mutant of jbc.M807325200
the coronavirus mouse hepatitis virus by targeted RNA recombination. Leyson, C.L.M., Jordan, B.J., and Jackwood, M.W. (2016). Insights from
J. Virol. 66, 1841–1848. molecular structure predictions of the infectious bronchitis virus S1
Kokame, K., Kato, H., and Miyata, T. (2001). Identification of ERSE-II, a spike glycoprotein. Infect. Genet. Evol. 46, 124–129.
new cis-acting element responsible for the ATF6-dependent mammalian Li, F.Q., Tam, J.P., and Liu, D.X. (2007). Cell cycle arrest and apoptosis
unfolded protein response. J. Biol. Chem. 276, 9199–9205. https://doi. induced by the coronavirus infectious bronchitis virus in the absence of
org/10.1074/jbc.M010486200 p53. Virology 365, 435–445.
Kong, Q., Xue, C., Ren, X., Zhang, C., Li, L., Shu, D., Bi, Y., and Cao, Y. (2010). Li, H., and Yang, H. (2001). Sequence analysis of nephropathogenic infectious
Proteomic analysis of purified coronavirus infectious bronchitis virus bronchitis virus strains of the Massachusetts genotype in Beijing. Avian
particles. Proteome Sci. 8, 29. https://doi.org/10.1186/1477-5956-8-29 Pathol. 30, 535–541. https://doi.org/10.1080/03079450120078734
Koonin, E.V. (1991). The phylogeny of RNA-dependent RNA polymerases Liao, Y., Lescar, J., Tam, J.P., and Liu, D.X. (2004). Expression of
of positive-strand RNA viruses. J. Gen. Virol. 72, 2197–2206. https:// SARS-coronavirus envelope protein in Escherichia coli cells alters
doi.org/10.1099/0022-1317-72-9-2197 membrane permeability. Biochem. Biophys. Res. Commun. 325,
Korennykh, A.V., Egea, P.F., Korostelev, A.A., Finer-Moore, J., Zhang, C., 374–380.
Shokat, K.M., Stroud, R.M., and Walter, P. (2009). The unfolded protein Liao, Y., Yuan, Q., Torres, J., Tam, J.P., and Liu, D.X. (2006). Biochemical and
response signals through high-order assembly of Ire1. Nature 457, functional characterization of the membrane association and membrane
687–693. https://doi.org/10.1038/nature07661 permeabilizing activity of the severe acute respiratory syndrome
Kotani, T., Wada, S., Tsukamoto, Y., Kuwamura, M., Yamate, J., and Sakuma, coronavirus envelope protein. Virology 349, 264–275.
S. (2000). Kinetics of lymphocytic subsets in chicken tracheal lesions Liao, Y., Wang, X., Huang, M., Tam, J.P., and Liu, D.X. (2011). Regulation of
infected with infectious bronchitis virus. J. Vet. Med. Sci. 62, 397–401. the p38 mitogenactivated protein kinase and dual-specificity phosphatase
Kroemer, G., Mariño, G., and Levine, B. (2010). Autophagy and the 1 feedback loop modulates the induction of interleukin 6 and 8 in cells
integrated stress response. Mol. Cell 40, 280–293. https://doi. infected with coronavirus infectious bronchitis virus. Virology 420,
org/10.1016/j.molcel.2010.09.023 106–116.
Kubo, H., Yamada, Y.K., and Taguchi, F. (1994). Localization of neutralizing Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., and Liu, D.X. (2013).
epitopes and the receptor-binding site within the amino-terminal Upregulation of CHOP/GADD153 during coronavirus infectious
330 amino acids of the murine coronavirus spike protein. J. Virol. 68, bronchitis virus infection modulates apoptosis by restricting activation of
5403–5410. the extracellular signal-regulated kinase pathway. J. Virol. 87, 8124–8134.
Kuo, L., and Masters, P.S. (2003). The small envelope protein E is not https://doi.org/10.1128/JVI.00626-13
essential for murine coronavirus replication. J. Virol. 77, 4597–4608. Lim, K.P., and Liu, D.X. (1998a). Characterization of the two overlapping
Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., and Rottier, P.J. papain-like proteinase domains encoded in gene 1 of the coronavirus
(2000). Retargeting of coronavirus by substitution of the spike