Page 178 - Avian Virology: Current Research and Future Trends
P. 178

Infectious Bronchitis Virus |   171
          Khataby, K., Souiri, A.,  Kasmi,  Y., Loutfi, C.,  and Ennaji,  M.M. (2016).   glycoprotein ectodomain: crossing the host cell species barrier. J. Virol.
            Current situation, genetic relationship and control measures of infectious   74, 1393–1406.
            bronchitis  virus variants  circulating  in  African  regions.  J. Basic.  Appl.   Kvansakul,  M.,  and  Hinds,  M.G.  (2013).  Structural  biology  of  the  Bcl-2
            Zool. 76, 20–30.                                      family and its mimicry by viral proteins. Cell Death Dis. 4, e909. https://
          Kimura, S., Noda, T., and Yoshimori, T. (2007). Dissection of the   doi.org/10.1038/cddis.2013.436
            autophagosome maturation process by a novel reporter protein, tandem   Laconi, A., van Beurden, S.J., Berends, A.J., Krämer-Kühl, A., Jansen, C.A.,
            fluorescent-tagged LC3. Autophagy 3, 452–460.         Spekreijse, D., Chénard, G., Philipp, H.C., Mundt, E., Rottier, P.J.M.,
          King, D.J., and Hopkins, S.R. (1984). Rapid serotyping of infectious   et al. (2018). Deletion of accessory genes 3a, 3b, 5a or 5b from avian
            bronchitis virus isolates with the hemagglutination-inhibition test. Avian   coronavirus infectious bronchitis virus induces an attenuated phenotype
            Dis. 28, 727–733.                                     both in vitro and in vivo. J. Gen. Virol. [Epub ahead of print]. https://doi.
          Kingham, B.F., Keeler, C.L., Nix, W.A., Ladman, B.S., and Gelb, J. (2000).   org/10.1099/jgv.0.001130
            Identification of avian infectious bronchitis virus by direct automated   Ladman, B.S., Pope, C.R., Ziegler, A.F., Swieczkowski, T., Callahan, C.J.,
            cycle sequencing of the S-1 gene. Avian Dis. 44, 325–335.  Davison, S., and Gelb, J. (2002). Protection of chickens after live and
          Kint, J., Fernandez-Gutierrez, M., Maier, H.J., Britton, P., Langereis, M.A.,   inactivated virus vaccination against challenge with nephropathogenic
            Koumans, J., Wiegertjes, G.F., and Forlenza, M. (2015). Activation of the   infectious bronchitis virus PA/Wolgemuth/98. Avian Dis. 46, 938–944.
            chicken type I interferon response by infectious bronchitis coronavirus.   https://doi.org/10.1637/0005-2086(2002)046[0938:POCALA]2.0
            J. Virol. 89, 1156–1167. https://doi.org/10.1128/JVI.02671-14  .CO;2
          Kint, J., Langereis, M.A., Maier, H.J., Britton, P., van Kuppeveld, F.J.,   Lambrechts, C., Pensaert, M., and Ducatelle, R. (1993). Challenge
            Koumans, J., Wiegertjes, G.F., and Forlenza, M. (2016). Infectious   experiments to evaluate cross-protection induced at the trachea and
            bronchitis coronavirus limits interferon production by inducing a host   kidney level by vaccine strains and Belgian nephropathogenic isolates of
            shutoff that requires accessory protein 5b. J. Virol.  90, 7519–7528.   avian infectious bronchitis virus. Avian Pathol. 22, 577–590.
            https://doi.org/10.1128/JVI.00627-16                Lang, R., Hammer, M., and Mages, J. (2006). DUSP meet immunology: dual
          Klieve, A.V., and Cumming, R.B. (1990). Respiratory disease and immunity   specificity MAPK phosphatases in control of the inflammatory response.
            to challenge produced by Australian strains of infectious bronchitis virus.   J. Immunol. 177, 7497–7504.
            Avian Pathol. 19, 305–312.                          Lee, A.H., Iwakoshi, N.N., and Glimcher, L.H. (2003). XBP-1 regulates
          Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H.,   a subset of endoplasmic reticulum resident chaperone genes in the
            Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli,   unfolded protein response. Mol. Cell. Biol. 23, 7448–7459.
            K., et al. (2016). Guidelines for the use and interpretation of assays for   Lee, C.W., and Jackwood, M.W. (2000). Evidence of genetic diversity
            monitoring autophagy (3rd edition). Autophagy 12, 1–222. https://doi.  generated by recombination among avian coronavirus IBV. Arch. Virol.
            org/10.1080/15548627.2015.1100356                     145, 2135–2148.
          Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der   Lee, C.W., and Jackwood, M.W. (2001). Origin and evolution of Georgia 98
            Meer, Y., Koster, A.J., Mommaas, A.M., and Snijder, E.J. (2008).   (GA98), a new serotype of avian infectious bronchitis virus. Virus Res.
            SARS-coronavirus replication is supported by a reticulovesicular   80, 33–39.
            network of modified endoplasmic reticulum. PLOS Biol.  6, e226.   Leibowitz, J.L., DeVries, J.R., and Haspel, M.V. (1982). Genetic analysis of
            https://doi.org/10.1371/journal.pbio.0060226          murine hepatitis virus strain JHM. J. Virol. 42, 1080–1087.
          Koch, G., Hartog, L., Kant, A., and van Roozelaar, D.J. (1990). Antigenic   Levine, B., and Deretic, V. (2007). Unveiling the roles of autophagy in innate
            domains on the peplomer protein of avian infectious bronchitis virus:   and adaptive immunity. Nat. Rev. Immunol. 7, 767–777.
            correlation with biological functions. J. Gen. Virol.  71, 1929–1935.   Lewerenz, J., and Maher, P. (2009). Basal levels of eIF2alpha phosphorylation
            https://doi.org/10.1099/0022-1317-71-9-1929           determine cellular antioxidant status by regulating ATF4 and xCT
          Koetzner, C.A., Parker, M.M., Ricard, C.S., Sturman, L.S., and Masters, P.S.   expression. J. Biol. Chem. 284, 1106–1115. https://doi.org/10.1074/
            (1992). Repair and mutagenesis of the genome of a deletion mutant of   jbc.M807325200
            the coronavirus mouse hepatitis virus by targeted RNA recombination.   Leyson, C.L.M., Jordan, B.J., and Jackwood, M.W. (2016). Insights from
            J. Virol. 66, 1841–1848.                              molecular structure predictions of the infectious bronchitis virus S1
          Kokame, K., Kato, H., and Miyata, T. (2001). Identification of ERSE-II, a   spike glycoprotein. Infect. Genet. Evol. 46, 124–129.
            new cis-acting element responsible for the ATF6-dependent mammalian   Li, F.Q., Tam, J.P., and Liu, D.X. (2007). Cell cycle arrest and apoptosis
            unfolded protein response. J. Biol. Chem. 276, 9199–9205. https://doi.  induced by the coronavirus infectious bronchitis virus in the absence of
            org/10.1074/jbc.M010486200                            p53. Virology 365, 435–445.
          Kong, Q., Xue, C., Ren, X., Zhang, C., Li, L., Shu, D., Bi, Y., and Cao, Y. (2010).   Li, H., and Yang, H. (2001). Sequence analysis of nephropathogenic infectious
            Proteomic analysis of purified coronavirus infectious bronchitis virus   bronchitis virus strains of the Massachusetts genotype in Beijing. Avian
            particles. Proteome Sci. 8, 29. https://doi.org/10.1186/1477-5956-8-29  Pathol. 30, 535–541. https://doi.org/10.1080/03079450120078734
          Koonin, E.V. (1991). The phylogeny of RNA-dependent RNA polymerases   Liao,  Y.,  Lescar,  J.,  Tam,  J.P.,  and  Liu,  D.X.  (2004).  Expression  of
            of positive-strand RNA viruses. J. Gen. Virol. 72, 2197–2206. https://  SARS-coronavirus envelope protein in Escherichia coli cells alters
            doi.org/10.1099/0022-1317-72-9-2197                   membrane permeability. Biochem. Biophys. Res. Commun.  325,
          Korennykh, A.V., Egea, P.F., Korostelev, A.A., Finer-Moore, J., Zhang, C.,   374–380.
            Shokat, K.M., Stroud, R.M., and Walter, P. (2009). The unfolded protein   Liao, Y., Yuan, Q., Torres, J., Tam, J.P., and Liu, D.X. (2006). Biochemical and
            response  signals  through  high-order  assembly  of  Ire1.  Nature  457,   functional characterization of the membrane association and membrane
            687–693. https://doi.org/10.1038/nature07661          permeabilizing activity of the severe acute respiratory syndrome
          Kotani, T., Wada, S., Tsukamoto, Y., Kuwamura, M., Yamate, J., and Sakuma,   coronavirus envelope protein. Virology 349, 264–275.
            S. (2000). Kinetics of lymphocytic subsets in chicken tracheal lesions   Liao, Y., Wang, X., Huang, M., Tam, J.P., and Liu, D.X. (2011). Regulation of
            infected with infectious bronchitis virus. J. Vet. Med. Sci. 62, 397–401.  the p38 mitogenactivated protein kinase and dual-specificity phosphatase
          Kroemer, G., Mariño, G., and Levine, B. (2010). Autophagy and the   1 feedback loop modulates the induction of interleukin 6 and 8 in cells
            integrated stress response. Mol. Cell  40, 280–293. https://doi.  infected with coronavirus infectious bronchitis virus. Virology  420,
            org/10.1016/j.molcel.2010.09.023                      106–116.
          Kubo, H., Yamada, Y.K., and Taguchi, F. (1994). Localization of neutralizing   Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., and Liu, D.X. (2013).
            epitopes and the receptor-binding site within the amino-terminal   Upregulation of CHOP/GADD153 during coronavirus infectious
            330 amino acids of the murine coronavirus spike protein. J. Virol. 68,   bronchitis virus infection modulates apoptosis by restricting activation of
            5403–5410.                                            the extracellular signal-regulated kinase pathway. J. Virol. 87, 8124–8134.
          Kuo, L., and Masters, P.S. (2003). The small envelope protein E is not   https://doi.org/10.1128/JVI.00626-13
            essential for murine coronavirus replication. J. Virol. 77, 4597–4608.   Lim, K.P., and Liu, D.X. (1998a). Characterization of the two overlapping
          Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., and Rottier, P.J.   papain-like proteinase domains encoded in gene 1 of the coronavirus
            (2000). Retargeting of coronavirus by substitution of the spike
   173   174   175   176   177   178   179   180   181   182   183