Page 177 - Avian Virology: Current Research and Future Trends
P. 177
170 | Liu et al.
Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam, Jackwood, M.W., Hilt, D.A., McCall, A.W., Polizzi, C.N., McKinley, E.T.,
P.Y., and Leung, F.C. (2008). Evidence of the recombinant origin of a and Williams, S.M. (2009). Infectious bronchitis virus field vaccination
bat severe acute respiratory syndrome (SARS)-like coronavirus and its coverage and persistence of Arkansas-type viruses in commercial broilers.
implications on the direct ancestor of SARS coronavirus. J. Virol. 82, Avian Dis. 53, 175–183. https://doi.org/10.1637/8465-090308-Reg.1
1819–1826. Jackwood, M.W., Hall, D., and Handel, A. (2012). Molecular evolution
Hopkins, S.R. (1974). Serological comparisons of strains of infectious and emergence of avian gammacoronaviruses. Infect. Genet. Evol. 12,
bronchitis virus using plaque-purified isolants. Avian Dis. 18, 231–239. 1305–1311. https://doi.org/10.1016/j.meegid.2012.05.003
Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Janse, E.M., van Roozelaar, D., and Koch, G. (1994). Leukocyte
Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., et al. (2009). subpopulations in kidney and trachea of chickens infected with infectious
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 bronchitis virus. Avian Pathol. 23, 513–523.
complex required for autophagy. Mol. Biol. Cell 20, 1981–1991. https:// Jia, W., and Naqi, S.A. (1997). Sequence analysis of gene 3, gene 4 and gene
doi.org/10.1091/mbc.E08-12-1248 5 of avian infectious bronchitis virus strain CU-T2. Gene 189, 189–193.
Hu, T., Chen, C., Li, H., Dou, Y., Zhou, M., Lu, D., Zong, Q., Li, Y., Yang, Johnson, M.A., Jaudzems, K., and Wüthrich, K. (2010). NMR Structure of
C., Zhong, Z., et al. (2017). Structural basis for dimerization and RNA the SARS-CoV Nonstructural Protein 7 in Solution at pH 6.5. J. Mol.
binding of avian infectious bronchitis virus nsp9. Protein Sci. 26, 1037– Biol. 402, 619–628. https://doi.org/10.1016/j.jmb.2010.07.043
1048. https://doi.org/10.1002/pro.3150 Johnson, R.B., and Marquardt, W.W. (1976). Strains of infectious bronchitis
Huang, I.C., Bosch, B.J., Li, W., Farzan, M., Rottier, P.M., and Choe, H. virus on the Delmarva peninsula and in Arkansas. Avian Dis. 20, 382–
(2006). SARS-CoV, but not HCoV-NL63, utilizes cathepsins to infect 386.
cells: viral entry. Adv. Exp. Med. Biol. 581, 335–338. Jones, R.C. (1974). Nephrosis in laying chickens caused by
Hurst, K.R., Koetzner, C.A., and Masters, P.S. (2009). Identification of Massachusetts-type infectious bronchitis virus. Vet. Rec. 95, 319.
in vivo-interacting domains of the murine coronavirus nucleocapsid Jones, R.C. (2008). Infectious laryngotracheitis. In Poultry Diseases, 6th
protein. J. Virol. 83, 7221–7234. https://doi.org/10.1128/JVI.00440-09 edn, M. Pattison, P. McMullin, J.M. Bradbury, and D. Alexander, eds
Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., and Masters, P.S. (2010). (Elsevier, Edinburgh), pp. 267–271.
An interaction between the nucleocapsid protein and a component Jones, R.C., and Jordan, F.T. (1972). Persistence of virus in the tissues and
of the replicase-transcriptase complex is crucial for the infectivity of development of the oviduct in the fowl following infection at day old
coronavirus genomic RNA. J. Virol. 84, 10276–10288. https://doi. with infectious bronchitis virus. Res. Vet. Sci. 13, 52–60.
org/10.1128/JVI.01287-10 Jordan, F.T.W., and Nassar, T.J. (1973). The combined influence of age of
Hurst, K.R., Koetzner, C.A., and Masters, P.S. (2013). Characterization of embryo, temperature and duration of incubation on the replication
a critical interaction between the coronavirus nucleocapsid protein and and yield of avian infectious bronchitis virus in the developing chicken
nonstructural protein 3 of the viral replicase-transcriptase complex. J. embryo. Avian Pathol. 2, 279–294.
Virol. 87, 9159–9172. https://doi.org/10.1128/JVI.01275-13 Joseph, J.S., Saikatendu, K.S., Subramanian, V., Neuman, B.W., Brooun, A.,
Igney, F.H., and Krammer, P.H. (2002). Death and anti-death: tumour Griffith, M., Moy, K., Yadav, M.K., Velasquez, J., Buchmeier, M.J., et al.
resistance to apoptosis. Nat. Rev. Cancer 2, 277–288. https://doi. (2006). Crystal structure of nonstructural protein 10 from the severe
org/10.1038/nrc776 acute respiratory syndrome coronavirus reveals a novel fold with two
Ignjatovic, J. (1988). Epidemiology of Infectious Bronchitis in Australia. zinc-binding motifs. J. Virol. 80, 7894–7901.
Proceedings of the 1st International Symposium on Infectious Bronchitis Jungherr, E.L., Chomiak, T.W., and Luginbuhl, R.E. (1956). Immunologic
(Rauischholzhausen, Germany), pp. 84–88. differences in strains of infectious bronchitis virus. In Proceedings of
Ignjatovic, J., and Sapats, S. (2000). Avian infectious bronchitis virus. Rev. 60th Annual Meeting of the United States Livestock Sanitary Association
Sci. Tech. 19, 493–508. (Chicago, IL), pp. 203–209.
Ignjatovic, J., Reece, R., and Ashton, F. (2003). Susceptibility of three Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T.,
genetic lines of chicks to infection with a nephropathogenic T strain of Ito, N., Kubo, H., and Makino, S. (2006). Severe acute respiratory
avian infectious bronchitis virus. J. Comp. Pathol. 128, 92–98. syndrome coronavirus nsp1 protein suppresses host gene expression by
Imbert, I., Guillemot, J.C., Bourhis, J.M., Bussetta, C., Coutard, B., Egloff, promoting host mRNA degradation. Proc. Natl. Acad. Sci. U.S.A. 103,
M.P., Ferron, F., Gorbalenya, A.E., and Canard, B. (2006). A second, 12885–12890.
non-canonical RNA-dependent RNA polymerase in SARS coronavirus. Kanjanahaluethai, A., Chen, Z., Jukneliene, D., and Baker, S.C. (2007).
EMBO J. 25, 4933–4942. Membrane topology of murine coronavirus replicase nonstructural
Inberg, A., and Linial, M. (2004). Evolutional insights on uncharacterized protein 3. Virology 361, 391–401.
SARS coronavirus genes. FEBS Lett. 577, 159–164. Kapczynski, D.R., Hilt, D.A., Shapiro, D., Sellers, H.S., and Jackwood,
Ivanov, K.A., and Ziebuhr, J. (2004). Human coronavirus 229E M.W. (2003). Protection of chickens from infectious bronchitis by in
nonstructural protein 13: characterization of duplex-unwinding, ovo and intramuscular vaccination with a DNA vaccine expressing the
nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J. Virol. S1 glycoprotein. Avian Dis. 47, 272–285. https://doi.org/10.1637/000
78, 7833–7838. https://doi.org/10.1128/JVI.78.14.7833-7838.2004 5-2086(2003)047[0272:POCFIB]2.0.CO;2
Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A.E., Kapke, P.A., Tung, F.Y., Hogue, B.G., Brian, D.A., Woods, R.D., and Wesley, R.
and Ziebuhr, J. (2004b). Major genetic marker of nidoviruses encodes a (1988). The amino-terminal signal peptide on the porcine transmissible
replicative endoribonuclease. Proc. Natl. Acad. Sci. U.S.A. 101, 12694– gastroenteritis coronavirus matrix protein is not an absolute requirement
12699. https://doi.org/10.1073/pnas.0403127101 for membrane translocation and glycosylation. Virology 165, 367–376.
Ivanov, K.A., Thiel, V., Dobbe, J.C., van der Meer, Y., Snijder, E.J., and Karaca, K., Naqi, S., and Gelb, J. (1992). Production and characterization
Ziebuhr, J. (2004a). Multiple enzymatic activities associated with severe of monoclonal antibodies to three infectious bronchitis virus serotypes.
acute respiratory syndrome coronavirus helicase. J. Virol. 78, 5619–5632. Avian Dis. 36, 903–915.
https://doi.org/10.1128/JVI.78.11.5619-5632.2004 Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors
Jackwood, M.W. (2012). Review of infectious bronchitis virus around the in innate immunity: update on Toll-like receptors. Nat. Immunol. 11,
world. Avian Dis. 56, 634–641. https://doi.org/10.1637/10227-04301 373–384. https://doi.org/10.1038/ni.1863
2-Review.1 Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii,
Jackwood, M.W., Kwon, H.M., and Hilt, D.A. (1992). Infectious bronchitis K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering
virus detection in allantoic fluid using the polymerase chain reaction and RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol.
a DNA probe. Avian Dis. 36, 403–409. 6, 981–988.
Jackwood, M.W., Hilt, D.A., Lee, C.W., Kwon, H.M., Callison, S.A., Moore, Keshet, Y., and Seger, R. (2010). The MAP kinase signaling cascades:
K.M., Moscoso, H., Sellers, H., and Thayer, S. (2005). Data from 11 years a system of hundreds of components regulates a diverse array of
of molecular typing infectious bronchitis virus field isolates. Avian Dis. physiological functions. Methods Mol. Biol. 661, 3–38. https://doi.
49, 614–618. https://doi.org/10.1637/7389-052905R.1 org/10.1007/978-1-60761-795-2_1