Page 177 - Avian Virology: Current Research and Future Trends
P. 177

170  |  Liu et al.
          Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam,   Jackwood, M.W., Hilt, D.A., McCall, A.W., Polizzi, C.N., McKinley, E.T.,
            P.Y., and Leung, F.C. (2008). Evidence of the recombinant origin of a   and Williams, S.M. (2009). Infectious bronchitis virus field vaccination
            bat severe acute respiratory syndrome (SARS)-like coronavirus and its   coverage and persistence of Arkansas-type viruses in commercial broilers.
            implications on the direct ancestor of SARS coronavirus. J. Virol. 82,   Avian Dis. 53, 175–183. https://doi.org/10.1637/8465-090308-Reg.1
            1819–1826.                                          Jackwood,  M.W.,  Hall,  D.,  and  Handel,  A.  (2012).  Molecular  evolution
          Hopkins, S.R. (1974). Serological comparisons of strains of infectious   and emergence of avian gammacoronaviruses. Infect. Genet. Evol. 12,
            bronchitis virus using plaque-purified isolants. Avian Dis. 18, 231–239.  1305–1311. https://doi.org/10.1016/j.meegid.2012.05.003
          Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura,   Janse, E.M., van Roozelaar, D., and Koch, G. (1994). Leukocyte
            Y.,  Iemura,  S.,  Natsume, T., Takehana, K., Yamada, N.,  et al.  (2009).   subpopulations in kidney and trachea of chickens infected with infectious
            Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200   bronchitis virus. Avian Pathol. 23, 513–523.
            complex required for autophagy. Mol. Biol. Cell 20, 1981–1991. https://  Jia, W., and Naqi, S.A. (1997). Sequence analysis of gene 3, gene 4 and gene
            doi.org/10.1091/mbc.E08-12-1248                        5 of avian infectious bronchitis virus strain CU-T2. Gene 189, 189–193.
          Hu, T., Chen, C., Li, H., Dou, Y., Zhou, M., Lu, D., Zong, Q., Li, Y., Yang,   Johnson, M.A., Jaudzems, K., and Wüthrich, K. (2010). NMR Structure of
            C., Zhong, Z., et al. (2017). Structural basis for dimerization and RNA   the SARS-CoV Nonstructural Protein 7 in Solution at pH 6.5. J. Mol.
            binding of avian infectious bronchitis virus nsp9. Protein Sci. 26, 1037–  Biol. 402, 619–628. https://doi.org/10.1016/j.jmb.2010.07.043
            1048. https://doi.org/10.1002/pro.3150              Johnson, R.B., and Marquardt, W.W. (1976). Strains of infectious bronchitis
          Huang, I.C., Bosch, B.J., Li, W., Farzan, M., Rottier, P.M., and Choe, H.   virus on the Delmarva peninsula and in Arkansas. Avian Dis. 20, 382–
            (2006). SARS-CoV, but not HCoV-NL63, utilizes cathepsins to infect   386.
            cells: viral entry. Adv. Exp. Med. Biol. 581, 335–338.   Jones, R.C. (1974). Nephrosis in laying chickens caused by
          Hurst, K.R., Koetzner, C.A., and Masters, P.S. (2009). Identification of   Massachusetts-type infectious bronchitis virus. Vet. Rec. 95, 319.
            in  vivo-interacting  domains  of  the murine coronavirus nucleocapsid   Jones, R.C. (2008). Infectious laryngotracheitis. In Poultry Diseases, 6th
            protein. J. Virol. 83, 7221–7234. https://doi.org/10.1128/JVI.00440-09  edn, M.  Pattison, P. McMullin, J.M. Bradbury,  and D. Alexander,  eds
          Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., and Masters, P.S. (2010).   (Elsevier, Edinburgh), pp. 267–271.
            An interaction between the nucleocapsid protein and a component   Jones, R.C., and Jordan, F.T. (1972). Persistence of virus in the tissues and
            of the replicase-transcriptase complex is crucial for the infectivity of   development of the oviduct in the fowl following infection at day old
            coronavirus genomic  RNA.  J.  Virol.  84,  10276–10288. https://doi.  with infectious bronchitis virus. Res. Vet. Sci. 13, 52–60.
            org/10.1128/JVI.01287-10                            Jordan, F.T.W., and Nassar, T.J. (1973). The combined influence of age of
          Hurst, K.R., Koetzner, C.A., and Masters, P.S. (2013). Characterization of   embryo, temperature and duration of incubation on the  replication
            a critical interaction between the coronavirus nucleocapsid protein and   and yield of avian infectious bronchitis virus in the developing chicken
            nonstructural protein 3 of the viral replicase-transcriptase complex. J.   embryo. Avian Pathol. 2, 279–294.
            Virol. 87, 9159–9172. https://doi.org/10.1128/JVI.01275-13  Joseph, J.S., Saikatendu, K.S., Subramanian, V., Neuman, B.W., Brooun, A.,
          Igney, F.H., and Krammer, P.H. (2002). Death and anti-death: tumour   Griffith, M., Moy, K., Yadav, M.K., Velasquez, J., Buchmeier, M.J., et al.
            resistance to apoptosis. Nat. Rev. Cancer  2, 277–288. https://doi.  (2006). Crystal structure of nonstructural protein 10 from the severe
            org/10.1038/nrc776                                     acute respiratory syndrome coronavirus reveals a novel fold with two
          Ignjatovic, J. (1988). Epidemiology of Infectious Bronchitis in Australia.   zinc-binding motifs. J. Virol. 80, 7894–7901.
            Proceedings of the 1st International Symposium on Infectious Bronchitis   Jungherr, E.L., Chomiak, T.W., and Luginbuhl, R.E. (1956). Immunologic
            (Rauischholzhausen, Germany), pp. 84–88.               differences in strains of infectious bronchitis virus. In Proceedings of
          Ignjatovic, J., and Sapats, S. (2000). Avian infectious bronchitis virus. Rev.   60th Annual Meeting of the United States Livestock Sanitary Association
            Sci. Tech. 19, 493–508.                                (Chicago, IL), pp. 203–209.
          Ignjatovic, J., Reece, R., and Ashton, F. (2003). Susceptibility of three   Kamitani,  W.,  Narayanan,  K.,  Huang,  C.,  Lokugamage,  K.,  Ikegami,  T.,
            genetic lines of chicks to infection with a nephropathogenic T strain of   Ito, N., Kubo, H., and Makino, S. (2006). Severe acute respiratory
            avian infectious bronchitis virus. J. Comp. Pathol. 128, 92–98.  syndrome coronavirus nsp1 protein suppresses host gene expression by
          Imbert, I., Guillemot, J.C., Bourhis, J.M., Bussetta, C., Coutard, B., Egloff,   promoting host mRNA degradation. Proc. Natl. Acad. Sci. U.S.A. 103,
            M.P., Ferron, F., Gorbalenya, A.E., and Canard, B. (2006). A second,   12885–12890.
            non-canonical RNA-dependent RNA polymerase in SARS coronavirus.   Kanjanahaluethai, A., Chen, Z., Jukneliene, D., and Baker, S.C. (2007).
            EMBO J. 25, 4933–4942.                                 Membrane topology of murine coronavirus replicase nonstructural
          Inberg, A., and Linial, M. (2004). Evolutional insights on uncharacterized   protein 3. Virology 361, 391–401.
            SARS coronavirus genes. FEBS Lett. 577, 159–164.    Kapczynski, D.R., Hilt, D.A., Shapiro, D., Sellers, H.S., and Jackwood,
          Ivanov,  K.A.,  and  Ziebuhr,  J.  (2004).  Human  coronavirus  229E   M.W. (2003). Protection of chickens from infectious bronchitis by in
            nonstructural protein 13: characterization of duplex-unwinding,   ovo and intramuscular vaccination with a DNA vaccine expressing the
            nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J. Virol.   S1 glycoprotein. Avian Dis. 47, 272–285. https://doi.org/10.1637/000
            78, 7833–7838. https://doi.org/10.1128/JVI.78.14.7833-7838.2004  5-2086(2003)047[0272:POCFIB]2.0.CO;2
          Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A.E.,   Kapke, P.A., Tung, F.Y., Hogue, B.G., Brian, D.A., Woods, R.D., and Wesley, R.
            and Ziebuhr, J. (2004b). Major genetic marker of nidoviruses encodes a   (1988). The amino-terminal signal peptide on the porcine transmissible
            replicative endoribonuclease. Proc. Natl. Acad. Sci. U.S.A. 101, 12694–  gastroenteritis coronavirus matrix protein is not an absolute requirement
            12699. https://doi.org/10.1073/pnas.0403127101         for membrane translocation and glycosylation. Virology 165, 367–376.
          Ivanov,  K.A.,  Thiel,  V.,  Dobbe,  J.C.,  van  der  Meer,  Y.,  Snijder,  E.J.,  and   Karaca, K., Naqi, S., and Gelb, J. (1992). Production and characterization
            Ziebuhr, J. (2004a). Multiple enzymatic activities associated with severe   of monoclonal antibodies to three infectious bronchitis virus serotypes.
            acute respiratory syndrome coronavirus helicase. J. Virol. 78, 5619–5632.   Avian Dis. 36, 903–915.
            https://doi.org/10.1128/JVI.78.11.5619-5632.2004    Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors
          Jackwood, M.W. (2012). Review of infectious bronchitis virus around the   in innate immunity: update on Toll-like receptors. Nat. Immunol. 11,
            world. Avian Dis. 56, 634–641. https://doi.org/10.1637/10227-04301  373–384. https://doi.org/10.1038/ni.1863
            2-Review.1                                          Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii,
          Jackwood, M.W., Kwon, H.M., and Hilt, D.A. (1992). Infectious bronchitis   K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering
            virus detection in allantoic fluid using the polymerase chain reaction and   RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol.
            a DNA probe. Avian Dis. 36, 403–409.                   6, 981–988.
          Jackwood, M.W., Hilt, D.A., Lee, C.W., Kwon, H.M., Callison, S.A., Moore,   Keshet, Y., and Seger, R. (2010). The MAP kinase signaling cascades:
            K.M., Moscoso, H., Sellers, H., and Thayer, S. (2005). Data from 11 years   a system of hundreds of components regulates a diverse array of
            of molecular typing infectious bronchitis virus field isolates. Avian Dis.   physiological functions. Methods Mol. Biol.  661, 3–38. https://doi.
            49, 614–618. https://doi.org/10.1637/7389-052905R.1    org/10.1007/978-1-60761-795-2_1
   172   173   174   175   176   177   178   179   180   181   182