Page 35 - Avian Virology: Current Research and Future Trends
P. 35
28 | Perez et al.
Chen, Y.Q., Wohlbold, T.J., Zheng, N.Y., Huang, M., Huang, Y., Neu, K.E., and functional insights. Curr. Opin. Virol. 2, 128–133. https://doi.
Lee, J., Wan, H., Rojas, K.T., Kirkpatrick, E., et al. (2018). Influenza org/10.1016/j.coviro.2012.01.005
infection in humans induces broadly cross-reactive and protective Crow, M., Deng, T., Addley, M., and Brownlee, G.G. (2004). Mutational
neuraminidase-reactive antibodies. Cell 173, 417–429.e10. analysis of the influenza virus cRNA promoter and identification of
Cheng, K., Yu, Z., Chai, H., Sun, W., Xin, Y., Zhang, Q., Huang, J., Zhang, nucleotides critical for replication. J. Virol. 78, 6263–6270. https://doi.
K., Li, X., Yang, S., et al. (2014). PB2-E627K and PA-T97I substitutions org/10.1128/JVI.78.12.6263-6270.2004
enhance polymerase activity and confer a virulent phenotype to an Dalby, A.R., and Iqbal, M. (2014). A global phylogenetic analysis in order
H6N1 avian influenza virus in mice. Virology 468-470, 207–213. to determine the host species and geography dependent features present
Cheng, V.C., Chan, J.F., Wen, X., Wu, W.L., Que, T.L., Chen, H., Chan, K.H., in the evolution of avian H9N2 influenza hemagglutinin. PeerJ 2, e655.
and Yuen, K.Y. (2011). Infection of immunocompromised patients https://doi.org/10.7717/peerj.655
by avian H9N2 influenza A virus. J. Infect. 62, 394–399. https://doi. Danzy, S., Studdard, L.R., Manicassamy, B., Solorzano, A., Marshall, N.,
org/10.1016/j.jinf.2011.02.007 García-Sastre, A., Steel, J., and Lowen, A.C. (2014). Mutations to PB2
Cheng, Y., Huang, Q., Ji, W., Du, B., Fu, Q., An, H., Li, J., Wang, H., Yan, and NP proteins of an avian influenza virus combine to confer efficient
Y., Ding, C., et al. (2015). Muscovy duck retinoic acid-induced gene I growth in primary human respiratory cells. J. Virol. 88, 13436–13446.
(MdRIG-I) functions in innate immunity against H9N2 avian influenza https://doi.org/10.1128/JVI.01093-14
viruses (AIV) infections. Vet. Immunol. Immunopathol. 163, 183–193. Das, A., Spackman, E., Senne, D., Pedersen, J., and Suarez, D.L. (2006).
https://doi.org/10.1016/j.vetimm.2014.12.009 Development of an internal positive control for rapid diagnosis of avian
Chlanda, P., Schraidt, O., Kummer, S., Riches, J., Oberwinkler, H., Prinz, influenza virus infections by real-time reverse transcription-PCR with
S., Kräusslich, H.G., and Briggs, J.A. (2015). Structural analysis of the lyophilized reagents. J. Clin. Microbiol. 44, 3065–3073.
roles of influenza A virus membrane-associated proteins in assembly Das, K., Ma, L.C., Xiao, R., Radvansky, B., Aramini, J., Zhao, L., Marklund,
and morphology. J. Virol. 89, 8957–8966. https://doi.org/10.1128/ J., Kuo, R.L., Twu, K.Y., Arnold, E., et al. (2008). Structural basis for
JVI.00592-15 suppression of a host antiviral response by influenza A virus. Proc.
Chockalingam, A.K., Hickman, D., Pena, L., Ye, J., Ferrero, A., Echenique, Natl. Acad. Sci. U.S.A. 105, 13093–13098. https://doi.org/10.1073/
J.R., Chen, H., Sutton, T., and Perez, D.R. (2012). Deletions in the pnas.0805213105
neuraminidase stalk region of H2N2 and H9N2 avian influenza virus Das, S.R., Hensley, S.E., David, A., Schmidt, L., Gibbs, J.S., Puigbò, P.,
subtypes do not affect postinfluenza secondary bacterial pneumonia. J. Ince, W.L., Bennink, J.R., and Yewdell, J.W. (2011). Fitness costs limit
Virol. 86, 3564–3573. https://doi.org/10.1128/JVI.05809-11 influenza A virus hemagglutinin glycosylation as an immune evasion
Choi, Y.K., Ozaki, H., Webby, R.J., Webster, R.G., Peiris, J.S., Poon, L., Butt, strategy. Proc. Natl. Acad. Sci. U.S.A. 108, E1417–22. https://doi.
C., Leung, Y.H., and Guan, Y. (2004). Continuing evolution of H9N2 org/10.1073/pnas.1108754108
influenza viruses in Southeastern China. J. Virol. 78, 8609–8614. https:// Davey, J., Dimmock, N.J., and Colman, A. (1985). Identification of the
doi.org/10.1128/JVI.78.16.8609-8614.2004 sequence responsible for the nuclear accumulation of the influenza virus
Chou, Y.Y., Vafabakhsh, R., Doğanay, S., Gao, Q., Ha, T., and Palese, P. nucleoprotein in Xenopus oocytes. Cell 40, 667–675.
(2012). One influenza virus particle packages eight unique viral RNAs Davidson, I., Fusaro, A., Heidari, A., Monne, I., and Cattoli, G. (2014).
as shown by FISH analysis. Proc. Natl. Acad. Sci. U.S.A. 109, 9101–9106. Molecular evolution of H9N2 avian influenza viruses in Israel. Virus
https://doi.org/10.1073/pnas.1206069109 Genes 48, 457–463. https://doi.org/10.1007/s11262-014-1037-0
Chou, Y.Y., Heaton, N.S., Gao, Q., Palese, P., Singer, R.H., Singer, R., de Jong, J.C., Rimmelzwaan, G.F., Fouchier, R.A., and Osterhaus, A.D.
and Lionnet, T. (2013). Colocalization of different influenza viral (2000). Influenza virus: a master of metamorphosis. J. Infect. 40,
RNA segments in the cytoplasm before viral budding as shown by 218–228.
single-molecule sensitivity FISH analysis. PLOS Pathog. 9, e1003358. de Jong, R.M., Stockhofe-Zurwieden, N., Verheij, E.S., de Boer-Luijtze,
https://doi.org/10.1371/journal.ppat.1003358 E.A., Ruiter, S.J., de Leeuw, O.S., and Cornelissen, L.A. (2013). Rapid
Chowdhury, M.Y., Seo, S.K., Moon, H.J., Talactac, M.R., Kim, J.H., Park, emergence of a virulent PB2 E627K variant during adaptation of highly
M.E., Son, H.Y., Lee, J.S., and Kim, C.J. (2014). Heterosubtypic pathogenic avian influenza H7N7 virus to mice. Virol. J. 10, 276. https://
protective immunity against widely divergent influenza subtypes induced doi.org/10.1186/1743-422X-10-276
by fusion protein 4sM2 in BALB/c mice. Virol. J. 11, 21. https://doi. De Vriese, J., Steensels, M., Palya, V., Gardin, Y., Dorsey, K.M., Lambrecht, B.,
org/10.1186/1743-422X-11-21 Van Borm, S., and van den Berg, T. (2010). Passive protection afforded
Chu, Y.C., Cheung, C.L., Hung Leung, C.Y., Man Poon, L.L., Chen, H., by maternally-derived antibodies in chickens and the antibodies’
Peiris, J.S., and Guan, Y. (2011). Continuing evolution of H9N2 interference with the protection elicited by avian influenza-inactivated
influenza viruses endemic in poultry in southern China. Influenza Other vaccines in progeny. Avian Dis. 54 (Suppl. 1), 246–252. https://doi.
Respir. Viruses 5 (Suppl. 1), 68–71. org/10.1637/8908-043009-Reg.1
Conenello, G.M., and Palese, P. (2007). Influenza A virus PB1-F2: a small de Wit, E., Spronken, M.I., Vervaet, G., Rimmelzwaan, G.F., Osterhaus, A.D.,
protein with a big punch. Cell Host Microbe 2, 207–209. and Fouchier, R.A. (2007). A reverse-genetics system for Influenza A
Conenello, G.M., Zamarin, D., Perrone, L.A., Tumpey, T., and Palese, P. virus using T7 RNA polymerase. J. Gen. Virol. 88, 1281-1287.
(2007). A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 Domenech, J., Dauphin, G., Rushton, J., McGrane, J., Lubroth, J., Tripodi,
influenza A viruses contributes to increased virulence. PLOS Pathog. 3, A., Gilbert, J., and Sims, L.D. (2009). Experiences with vaccination in
1414–1421. countries endemically infected with highly pathogenic avian influenza:
Conenello, G.M., Tisoncik, J.R., Rosenzweig, E., Varga, Z.T., Palese, P., and the Food and Agriculture Organization perspective. Rev. Sci. Tech. 28,
Katze, M.G. (2011). A single N66S mutation in the PB1-F2 protein of 293–305.
influenza A virus increases virulence by inhibiting the early interferon Dorrington, K.J. (1976). Properties of the Fc receptor on macrophages.
response in vivo. J. Virol. 85, 652–662. https://doi.org/10.1128/ Immunol. Commun. 5, 263–280.
JVI.01987-10 Downing, T., Lloyd, A.T., O’Farrelly, C., and Bradley, D.G. (2010). The
Crescenzo-Chaigne, B., van der Werf, S., and Naffakh, N. (2002). Differential differential evolutionary dynamics of avian cytokine and TLR gene
effect of nucleotide substitutions in the 3’ arm of the influenza A virus classes. J. Immunol. 184, 6993–7000. https://doi.org/10.4049/
vRNA promoter on transcription/replication by avian and human jimmunol.0903092
polymerase complexes is related to the nature of PB2 amino acid 627. Du, Y., Xin, L., Shi, Y., Zhang, T.H., Wu, N.C., Dai, L., Gong, D., Brar,
Virology 303, 240–252. G., Shu, S., Luo, J., et al. (2018). Genome-wide identification of
Cross, K.J., Langley, W.A., Russell, R.J., Skehel, J.J., and Steinhauer, D.A. interferon-sensitive mutations enables influenza vaccine design. Science
(2009). Composition and functions of the influenza fusion peptide. 359, 290–296. https://doi.org/10.1126/science.aan8806
Protein Pept. Lett. 16, 766–778. DuBois, R.M., Zaraket, H., Reddivari, M., Heath, R.J., White, S.W., and
Cross, T.A., Dong, H., Sharma, M., Busath, D.D., and Zhou, H.X. (2012). Russell, C.J. (2011). Acid stability of the hemagglutinin protein regulates
M2 protein from influenza A: from multiple structures to biophysical H5N1 influenza virus pathogenicity. PLOS Pathog. 7, e1002398.
https://doi.org/10.1371/journal.ppat.1002398