Page 35 - Avian Virology: Current Research and Future Trends
P. 35

28  |  Perez et al.
          Chen, Y.Q., Wohlbold, T.J., Zheng, N.Y., Huang, M., Huang, Y., Neu, K.E.,   and  functional  insights.  Curr.  Opin.  Virol.  2,  128–133.  https://doi.
            Lee,  J.,  Wan,  H.,  Rojas,  K.T.,  Kirkpatrick,  E.,  et al.  (2018).  Influenza   org/10.1016/j.coviro.2012.01.005
            infection in humans induces broadly cross-reactive and protective   Crow, M., Deng, T., Addley, M., and Brownlee, G.G. (2004). Mutational
            neuraminidase-reactive antibodies. Cell 173, 417–429.e10.  analysis of the influenza virus cRNA promoter and identification of
          Cheng, K., Yu, Z., Chai, H., Sun, W., Xin, Y., Zhang, Q., Huang, J., Zhang,   nucleotides critical for replication. J. Virol. 78, 6263–6270. https://doi.
            K., Li, X., Yang, S., et al. (2014). PB2-E627K and PA-T97I substitutions   org/10.1128/JVI.78.12.6263-6270.2004
            enhance polymerase activity and confer a virulent phenotype to an   Dalby, A.R., and Iqbal, M. (2014). A global phylogenetic analysis in order
            H6N1 avian influenza virus in mice. Virology 468-470, 207–213.  to determine the host species and geography dependent features present
          Cheng, V.C., Chan, J.F., Wen, X., Wu, W.L., Que, T.L., Chen, H., Chan, K.H.,   in the evolution of avian H9N2 influenza hemagglutinin. PeerJ 2, e655.
            and Yuen, K.Y. (2011). Infection of immunocompromised patients   https://doi.org/10.7717/peerj.655
            by avian H9N2 influenza A virus. J. Infect. 62, 394–399. https://doi.  Danzy, S., Studdard, L.R., Manicassamy, B., Solorzano, A., Marshall, N.,
            org/10.1016/j.jinf.2011.02.007                         García-Sastre, A., Steel, J., and Lowen, A.C. (2014). Mutations to PB2
          Cheng, Y., Huang, Q., Ji, W., Du, B., Fu, Q., An, H., Li, J., Wang, H., Yan,   and NP proteins of an avian influenza virus combine to confer efficient
            Y., Ding, C., et al. (2015). Muscovy duck retinoic acid-induced gene I   growth in primary human respiratory cells. J. Virol. 88, 13436–13446.
            (MdRIG-I) functions in innate immunity against H9N2 avian influenza   https://doi.org/10.1128/JVI.01093-14
            viruses (AIV) infections. Vet. Immunol. Immunopathol. 163, 183–193.   Das, A., Spackman, E., Senne, D., Pedersen, J., and Suarez, D.L. (2006).
            https://doi.org/10.1016/j.vetimm.2014.12.009           Development of an internal positive control for rapid diagnosis of avian
          Chlanda, P., Schraidt, O., Kummer, S., Riches, J., Oberwinkler, H., Prinz,   influenza virus infections by real-time reverse transcription-PCR with
            S., Kräusslich, H.G., and Briggs, J.A. (2015). Structural analysis of the   lyophilized reagents. J. Clin. Microbiol. 44, 3065–3073.
            roles  of  influenza  A  virus  membrane-associated  proteins  in  assembly   Das, K., Ma, L.C., Xiao, R., Radvansky, B., Aramini, J., Zhao, L., Marklund,
            and  morphology.  J.  Virol.  89,  8957–8966.  https://doi.org/10.1128/  J., Kuo, R.L., Twu, K.Y., Arnold, E., et al. (2008). Structural basis for
            JVI.00592-15                                           suppression  of a host antiviral  response by influenza  A virus. Proc.
          Chockalingam, A.K., Hickman, D., Pena, L., Ye, J., Ferrero, A., Echenique,   Natl. Acad. Sci. U.S.A.  105, 13093–13098. https://doi.org/10.1073/
            J.R., Chen, H., Sutton, T., and Perez, D.R. (2012). Deletions in the   pnas.0805213105
            neuraminidase stalk region of H2N2 and H9N2 avian influenza virus   Das, S.R., Hensley, S.E., David, A., Schmidt, L., Gibbs, J.S., Puigbò, P.,
            subtypes do not affect postinfluenza secondary bacterial pneumonia. J.   Ince, W.L., Bennink, J.R., and Yewdell, J.W. (2011). Fitness costs limit
            Virol. 86, 3564–3573. https://doi.org/10.1128/JVI.05809-11  influenza  A  virus  hemagglutinin  glycosylation  as  an  immune  evasion
          Choi, Y.K., Ozaki, H., Webby, R.J., Webster, R.G., Peiris, J.S., Poon, L., Butt,   strategy. Proc. Natl. Acad. Sci. U.S.A.  108, E1417–22. https://doi.
            C., Leung, Y.H., and Guan, Y. (2004). Continuing evolution of H9N2   org/10.1073/pnas.1108754108
            influenza viruses in Southeastern China. J. Virol. 78, 8609–8614. https://  Davey, J., Dimmock, N.J., and Colman, A. (1985). Identification of the
            doi.org/10.1128/JVI.78.16.8609-8614.2004               sequence responsible for the nuclear accumulation of the influenza virus
          Chou, Y.Y., Vafabakhsh, R., Doğanay, S., Gao, Q., Ha, T., and Palese, P.   nucleoprotein in Xenopus oocytes. Cell 40, 667–675.
            (2012). One influenza virus particle packages eight unique viral RNAs   Davidson, I., Fusaro, A., Heidari, A., Monne, I., and Cattoli, G. (2014).
            as shown by FISH analysis. Proc. Natl. Acad. Sci. U.S.A. 109, 9101–9106.   Molecular evolution of H9N2 avian influenza viruses in Israel. Virus
            https://doi.org/10.1073/pnas.1206069109                Genes 48, 457–463. https://doi.org/10.1007/s11262-014-1037-0
          Chou, Y.Y., Heaton, N.S., Gao, Q., Palese, P., Singer, R.H., Singer, R.,   de Jong, J.C., Rimmelzwaan, G.F., Fouchier, R.A., and Osterhaus, A.D.
            and Lionnet, T. (2013). Colocalization of different influenza viral   (2000). Influenza virus: a master of metamorphosis. J. Infect.  40,
            RNA  segments  in  the  cytoplasm  before  viral  budding  as  shown  by   218–228.
            single-molecule sensitivity FISH analysis. PLOS Pathog. 9, e1003358.   de  Jong,  R.M.,  Stockhofe-Zurwieden,  N.,  Verheij,  E.S.,  de  Boer-Luijtze,
            https://doi.org/10.1371/journal.ppat.1003358           E.A., Ruiter, S.J., de Leeuw, O.S., and Cornelissen, L.A. (2013). Rapid
          Chowdhury, M.Y., Seo, S.K., Moon, H.J., Talactac, M.R., Kim, J.H., Park,   emergence of a virulent PB2 E627K variant during adaptation of highly
            M.E., Son, H.Y., Lee, J.S., and Kim, C.J. (2014). Heterosubtypic   pathogenic avian influenza H7N7 virus to mice. Virol. J. 10, 276. https://
            protective immunity against widely divergent influenza subtypes induced   doi.org/10.1186/1743-422X-10-276
            by fusion protein 4sM2 in BALB/c mice. Virol. J. 11, 21. https://doi.  De Vriese, J., Steensels, M., Palya, V., Gardin, Y., Dorsey, K.M., Lambrecht, B.,
            org/10.1186/1743-422X-11-21                            Van Borm, S., and van den Berg, T. (2010). Passive protection afforded
          Chu, Y.C., Cheung, C.L., Hung Leung, C.Y., Man Poon, L.L., Chen, H.,   by maternally-derived antibodies in chickens and the antibodies’
            Peiris, J.S., and Guan, Y. (2011). Continuing evolution of H9N2   interference with the protection elicited by avian influenza-inactivated
            influenza viruses endemic in poultry in southern China. Influenza Other   vaccines in progeny. Avian Dis. 54 (Suppl. 1), 246–252. https://doi.
            Respir. Viruses 5 (Suppl. 1), 68–71.                   org/10.1637/8908-043009-Reg.1
          Conenello, G.M., and Palese, P. (2007). Influenza A virus PB1-F2: a small   de Wit, E., Spronken, M.I., Vervaet, G., Rimmelzwaan, G.F., Osterhaus, A.D.,
            protein with a big punch. Cell Host Microbe 2, 207–209.  and Fouchier, R.A. (2007). A reverse-genetics system for Influenza A
          Conenello, G.M., Zamarin, D., Perrone, L.A., Tumpey, T., and Palese, P.   virus using T7 RNA polymerase. J. Gen. Virol. 88, 1281-1287.
            (2007). A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918   Domenech, J., Dauphin, G., Rushton, J., McGrane, J., Lubroth, J., Tripodi,
            influenza A viruses contributes to increased virulence. PLOS Pathog. 3,   A., Gilbert, J., and Sims, L.D. (2009). Experiences with vaccination in
            1414–1421.                                             countries endemically infected with highly pathogenic avian influenza:
          Conenello, G.M., Tisoncik, J.R., Rosenzweig, E., Varga, Z.T., Palese, P., and   the Food and Agriculture Organization perspective. Rev. Sci. Tech. 28,
            Katze, M.G. (2011). A single N66S mutation in the PB1-F2 protein of   293–305.
            influenza A virus increases virulence by inhibiting the early interferon   Dorrington, K.J. (1976). Properties of the Fc receptor on macrophages.
            response in vivo. J. Virol.  85, 652–662. https://doi.org/10.1128/  Immunol. Commun. 5, 263–280.
            JVI.01987-10                                        Downing, T., Lloyd, A.T., O’Farrelly, C., and Bradley, D.G. (2010). The
          Crescenzo-Chaigne, B., van der Werf, S., and Naffakh, N. (2002). Differential   differential  evolutionary  dynamics  of  avian  cytokine  and  TLR  gene
            effect of nucleotide substitutions in the 3’ arm of the influenza A virus   classes. J. Immunol.  184, 6993–7000. https://doi.org/10.4049/
            vRNA promoter on transcription/replication by avian and human   jimmunol.0903092
            polymerase complexes is related to the nature of PB2 amino acid 627.   Du, Y., Xin, L., Shi, Y., Zhang, T.H., Wu, N.C., Dai, L., Gong, D., Brar,
            Virology 303, 240–252.                                 G., Shu, S., Luo, J.,  et  al. (2018). Genome-wide identification of
          Cross, K.J., Langley, W.A., Russell, R.J., Skehel, J.J., and Steinhauer, D.A.   interferon-sensitive mutations enables influenza vaccine design. Science
            (2009). Composition and functions of the influenza fusion peptide.   359, 290–296. https://doi.org/10.1126/science.aan8806
            Protein Pept. Lett. 16, 766–778.                    DuBois,  R.M.,  Zaraket,  H.,  Reddivari, M., Heath,  R.J.,  White, S.W.,  and
          Cross, T.A., Dong, H., Sharma, M., Busath, D.D., and Zhou, H.X. (2012).   Russell, C.J. (2011). Acid stability of the hemagglutinin protein regulates
            M2 protein from influenza A: from multiple structures to biophysical   H5N1 influenza virus pathogenicity. PLOS Pathog.  7, e1002398.
                                                                   https://doi.org/10.1371/journal.ppat.1002398
   30   31   32   33   34   35   36   37   38   39   40