Page 36 - Avian Virology: Current Research and Future Trends
P. 36
Avian Influenza Virus | 29
Dudek, S.E., Wixler, L., Nordhoff, C., Nordmann, A., Anhlan, D., Wixler, Flory, E., Kunz, M., Scheller, C., Jassoy, C., Stauber, R., Rapp, U.R., and
V., and Ludwig, S. (2011). The influenza virus PB1-F2 protein has Ludwig, S. (2000). Influenza virus-induced NF-kappaB-dependent gene
interferon antagonistic activity. Biol. Chem. 392, 1135–1144. https:// expression is mediated by overexpression of viral proteins and involves
doi.org/10.1515/BC.2011.174 oxidative radicals and activation of IkappaB kinase. J. Biol. Chem. 275,
Eames, K.T., Webb, C., Thomas, K., Smith, J., Salmon, R., and Temple, 8307–8314.
J.M. (2010). Assessing the role of contact tracing in a suspected H7N2 Fodor, E., Devenish, L., Engelhardt, O.G., Palese, P., Brownlee, G.G., and
influenza A outbreak in humans in Wales. BMC Infect. Dis. 10, 141. García-Sastre, A. (1999). Rescue of influenza A virus from recombinant
https://doi.org/10.1186/1471-2334-10-141 DNA. J. Virol. 73, 9679–9682.
Easterday, B.C., and Tumova, B. (1972). Avian influenza viruses: in avian Foreign Agricultural Service (2017). Livestock and Poultry: World Markets
species and the natural history of influenza. Adv. Vet. Sci. Comp. Med. and Trade, United States Department of Agriculture, ed. Washington,
16, 201–222. DC. Available online: https://www.fas.usda.gov/.
Easterday, B.C., Trainer, D.O., Tůmová, B., and Pereira, H.G. (1968). Fouchier, R.A., Schneeberger, P.M., Rozendaal, F.W., Broekman, J.M.,
Evidence of infection with influenza viruses in migratory waterfowl. Kemink, S.A., Munster, V., Kuiken, T., Rimmelzwaan, G.F., Schutten,
Nature 219, 523–524. M., Van Doornum, G.J., et al. (2004). Avian influenza A virus (H7N7)
Ehrhardt, C., and Ludwig, S. (2009). A new player in a deadly game: associated with human conjunctivitis and a fatal case of acute respiratory
influenza viruses and the PI3K/Akt signalling pathway. Cell. Microbiol. distress syndrome. Proc. Natl. Acad. Sci. U.S.A. 101, 1356–1361.
11, 863–871. https://doi.org/10.1111/j.1462-5822.2009.01309.x https://doi.org/10.1073/pnas.0308352100
Ehrhardt, C., Marjuki, H., Wolff, T., Nürnberg, B., Planz, O., Pleschka, S., and França, M.S., and Brown, J.D. (2014). Influenza pathobiology and
Ludwig, S. (2006). Bivalent role of the phosphatidylinositol-3-kinase pathogenesis in avian species. Curr. Top. Microbiol. Immunol. 385,
(PI3K) during influenza virus infection and host cell defence. Cell. 221–242. https://doi.org/10.1007/82_2014_385
Microbiol. 8, 1336–1348. Freidl, G.S., Meijer, A., de Bruin, E., de Nardi, M., Munoz, O., Capua, I.,
Eichelberger, M.C., and Wan, H. (2015). Influenza neuraminidase as a Breed, A.C., Harris, K., Hill, A., Kosmider, R., et al. (2014). Influenza
vaccine antigen. Curr. Top. Microbiol. Immunol. 386, 275–299. https:// at the animal-human interface: a review of the literature for virological
doi.org/10.1007/82_2014_398 evidence of human infection with swine or avian influenza viruses other
Els, M.C., Air, G.M., Murti, K.G., Webster, R.G., and Laver, W.G. (1985). than A(H5N1). Euro Surveill. 19, 20793.
An 18-amino acid deletion in an influenza neuraminidase. Virology 142, Frensing, T., Kupke, S.Y., Bachmann, M., Fritzsche, S., Gallo-Ramirez, L.E.,
241–247. and Reichl, U. (2016). Influenza virus intracellular replication dynamics,
Elster, C., Fourest, E., Baudin, F., Larsen, K., Cusack, S., and Ruigrok, R.W. release kinetics, and particle morphology during propagation in MDCK
(1994). A small percentage of influenza virus M1 protein contains zinc cells. Appl. Microbiol. Biotechnol. 100, 7181–7192. https://doi.
but zinc does not influence in vitro M1-RNA interaction. J. Gen. Virol. org/10.1007/s00253-016-7542-4
75, 37–42. https://doi.org/10.1099/0022-1317-75-1-37 Fujii, K., Fujii, Y., Noda, T., Muramoto, Y., Watanabe, T., Takada, A., Goto,
Elton, D., Medcalf, E., Bishop, K., and Digard, P. (1999). Oligomerization of H., Horimoto, T., and Kawaoka, Y. (2005). Importance of both the
the influenza virus nucleoprotein: identification of positive and negative coding and the segment-specific noncoding regions of the influenza A
sequence elements. Virology 260, 190–200. https://doi.org/10.1006/ virus NS segment for its efficient incorporation into virions. J. Virol. 79,
viro.1999.9818 3766–3774.
Elton, D., Simpson-Holley, M., Archer, K., Medcalf, L., Hallam, R., Fujimoto, Y., Tomioka, Y., Takakuwa, H., Uechi, G., Yabuta, T., Ozaki, K.,
McCauley, J., and Digard, P. (2001). Interaction of the influenza virus Suyama, H., Yamamoto, S., Morimatsu, M., Mai, L.Q., et al. (2016).
nucleoprotein with the cellular CRM1-mediated nuclear export pathway. Cross-protective potential of anti-nucleoprotein human monoclonal
J. Virol. 75, 408–419. https://doi.org/10.1128/JVI.75.1.408-419.2001 antibodies against lethal influenza A virus infection. J. Gen. Virol. 97,
Engelhardt, O.G. (2013). Many ways to make an influenza virus – review of 2104–2116. https://doi.org/10.1099/jgv.0.000518
influenza virus reverse genetics methods. Influenza Other Respir. Viruses Fynan, E.F., Robinson, H.L., and Webster, R.G. (1993). Use of DNA
7, 249–256. https://doi.org/10.1111/j.1750-2659.2012.00392.x encoding influenza hemagglutinin as an avian influenza vaccine. DNA
FAO (Food and Agriculture Organization of the United Nations) (2005). Cell Biol. 12, 785–789. https://doi.org/10.1089/dna.1993.12.785
Economic and Social Impacts of Avian Influenza. Rome, Italy. Available Gabriel, G., Dauber, B., Wolff, T., Planz, O., Klenk, H.D., and Stech, J. (2005).
online: http://www.fao.org/avianflu/documents/Economic-and- The viral polymerase mediates adaptation of an avian influenza virus to a
social-impacts-of-avian-influenza-Geneva.pdf. mammalian host. Proc. Natl. Acad. Sci. U.S.A. 102, 18590–18595.
FAO (Food and Agriculture Organization of the United Nations) (2017). Gabriel, G., Herwig, A., and Klenk, H.D. (2008). Interaction of polymerase
H7N9 Situation Update, Rome, Italy. Available online: http://www. subunit PB2 and NP with importin alpha1 is a determinant of host range
fao.org/ag/againfo/programmes/en/empres/h7n9/situation_update. of influenza A virus. PLOS Pathog. 4, e11. https://doi.org/10.1371/
html. journal.ppat.0040011
Feng, K.H., Sun, M., Iketani, S., Holmes, E.C., and Parrish, C.R. (2016). Gabriel, G., Klingel, K., Otte, A., Thiele, S., Hudjetz, B., Arman-Kalcek, G.,
Comparing the functions of equine and canine influenza H3N8 virus Sauter, M., Shmidt, T., Rother, F., Baumgarte, S., et al. (2011). Differential
PA-X proteins: Suppression of reporter gene expression and modulation use of importin-α isoforms governs cell tropism and host adaptation of
of global host gene expression. Virology 496, 138–146. influenza virus. Nat. Commun. 2, 156.
Fernandez-Sesma, A. (2007). The influenza virus NS1 protein: inhibitor of Gabriel, G., Czudai-Matwich, V., and Klenk, H.D. (2013). Adaptive
innate and adaptive immunity. Infect. Disord. Drug Targets 7, 336–343. mutations in the H5N1 polymerase complex. Virus Res. 178, 53–62.
Fernandez-Sesma, A., Marukian, S., Ebersole, B.J., Kaminski, D., Park, M.S., https://doi.org/10.1016/j.virusres.2013.05.010
Yuen, T., Sealfon, S.C., García-Sastre, A., and Moran, T.M. (2006). Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I.C., Carnero, E.,
Influenza virus evades innate and adaptive immunity via the NS1 protein. Farzan, M., Inoue, S., Jung, J.U., and García-Sastre, A. (2009). Influenza
J. Virol. 80, 6295–6304. A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition
Finch, C., Li, W., and Perez, D.R. (2015). Design of alternative live attenuated by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439–449.
influenza virus vaccines. Curr. Top. Microbiol. Immunol. 386, 205–235. https://doi.org/10.1016/j.chom.2009.04.006
https://doi.org/10.1007/82_2014_404 Gale, M., and Katze, M.G. (1998). Molecular mechanisms of interferon
Firth, A.E., Jagger, B.W., Wise, H.M., Nelson, C.C., Parsawar, K., Wills, N.M., resistance mediated by viral-directed inhibition of PKR, the
Napthine, S., Taubenberger, J.K., Digard, P., and Atkins, J.F. (2012). interferon-induced protein kinase. Pharmacol. Ther. 78, 29–46.
Ribosomal frameshifting used in influenza A virus expression occurs Gamblin, S.J., and Skehel, J.J. (2010). Influenza hemagglutinin and
within the sequence UCC_UUU_CGU and is in the +1 direction. Open neuraminidase membrane glycoproteins. J. Biol. Chem. 285, 28403–
Biol. 2, 120109. https://doi.org/10.1098/rsob.120109 28409. https://doi.org/10.1074/jbc.R110.129809
Flick, R., and Hobom, G. (1999). Interaction of influenza virus polymerase Gao, H., Sun, Y., Hu, J., Qi, L., Wang, J., Xiong, X., Wang, Y., He, Q., Lin,
with viral RNA in the ‘corkscrew’ conformation. J. Gen. Virol. 80, 2565– Y., Kong, W., et al. (2015a). The contribution of PA-X to the virulence
2572. https://doi.org/10.1099/0022-1317-80-10-2565