Page 37 - Avian Virology: Current Research and Future Trends
P. 37
30 | Perez et al.
of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza genome incorporation signal and a genome-bundling signal. J. Virol. 87,
viruses. Sci. Rep. 5, 8262. https://doi.org/10.1038/srep08262 11316–11322. https://doi.org/10.1128/JVI.01301-13
Gao, H., Xu, G., Sun, Y., Qi, L., Wang, J., Kong, W., Sun, H., Pu, J., Chang, Grad, Y.H., and Lipsitch, M. (2014). Epidemiologic data and pathogen
K.C., and Liu, J. (2015b). PA-X is a virulence factor in avian H9N2 genome sequences: a powerful synergy for public health. Genome Biol.
influenza virus. J. Gen. Virol. 96, 2587–2594. https://doi.org/10.1099/ 15, 538. https://doi.org/10.1186/s13059-014-0538-4
jgv.0.000232 Graef, K.M., Vreede, F.T., Lau, Y.F., McCall, A.W., Carr, S.M., Subbarao,
Gao, Q., Chou, Y.Y., Doğanay, S., Vafabakhsh, R., Ha, T., and Palese, P. K., and Fodor, E. (2010). The PB2 subunit of the influenza virus RNA
(2012). The influenza A virus PB2, PA, NP, and M segments play a polymerase affects virulence by interacting with the mitochondrial
pivotal role during genome packaging. J. Virol. 86, 7043–7051. https:// antiviral signaling protein and inhibiting expression of beta interferon. J.
doi.org/10.1128/JVI.00662-12 Virol. 84, 8433–8445. https://doi.org/10.1128/JVI.00879-10
Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Gross, G., Ikenberg, H., Roussaki, A., Drees, N., and Schöpf, E. (1986).
Xu, K., et al. (2013). Human infection with a novel avian-origin influenza Systemic treatment of condylomata acuminata with recombinant
A (H7N9) virus. N. Engl. J. Med. 368, 1888–1897. interferon-alpha-2a: low-dose superior to the high-dose regimen.
García-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D.E., Durbin, Chemotherapy 32, 537–541. https://doi.org/10.1159/000238464
J.E., Palese, P., and Muster, T. (1998). Influenza A virus lacking the NS1 Gruenke, J.A., Armstrong, R.T., Newcomb, W.W., Brown, J.C., and White,
gene replicates in interferon-deficient systems. Virology 252, 324–330. J.M. (2002). New insights into the spring-loaded conformational change
Gardin, Y., Palya, V., Dorsey, K.M., El-Attrache, J., Bonfante, F., De Wit, of influenza virus hemagglutinin. J. Virol. 76, 4456–4466.
S., Kapczynski, D., Kilany, W.H., Rauw, F., Steensels, M., et al. (2016). Guan, Y., and Smith, G.J. (2013). The emergence and diversification of
Experimental and field results regarding immunity induced by a panzootic H5N1 influenza viruses. Virus Res. 178, 35–43. https://doi.
recombinant turkey herpesvirus H5 vector vaccine against H5N1 and org/10.1016/j.virusres.2013.05.012
other H5 highly pathogenic avian influenza virus challenges. Avian Dis. 60 Guan, Y., Smith, G.J., Webby, R., and Webster, R.G. (2009). Molecular
(Suppl. 1), 232–237. https://doi.org/10.1637/11144-050815-ResNote epidemiology of H5N1 avian influenza. Rev. Sci. Tech. 28, 39–47.
Gaur, P., Munjhal, A., and Lal, S.K. (2011). Influenza virus and cell signaling Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H., and Lambrecht, B.N.
pathways. Med. Sci. Monit. 17, RA148–54. (2014). The function of Fcγ receptors in dendritic cells and macrophages.
Gibbs, J.S., Malide, D., Hornung, F., Bennink, J.R., and Yewdell, J.W. (2003b). Nat. Rev. Immunol. 14, 94–108. https://doi.org/10.1038/nri3582
The influenza A virus PB1-F2 protein targets the inner mitochondrial Guu, T.S., Dong, L., Wittung-Stafshede, P., and Tao, Y.J. (2008). Mapping
membrane via a predicted basic amphipathic helix that disrupts the domain structure of the influenza A virus polymerase acidic protein
mitochondrial function. J. Virol. 77, 7214–7224. (PA) and its interaction with the basic protein 1 (PB1) subunit. Virology
Gingras, S., Parganas, E., de Pauw, A., Ihle, J.N., and Murray, P.J. (2004). 379, 135–142. https://doi.org/10.1016/j.virol.2008.06.022
Re-examination of the role of suppressor of cytokine signaling 1 Hale, B.G. (2014). Conformational plasticity of the influenza A virus NS1
(SOCS1) in the regulation of toll-like receptor signaling. J. Biol. Chem. protein. J. Gen. Virol. 95, 2099–2105.
279, 54702–54707. Hale, B.G., Jackson, D., Chen, Y.H., Lamb, R.A., and Randall, R.E.
Giotis, E.S., Ross, C.S., Robey, R.C., Nohturfft, A., Goodbourn, S., and (2006). Influenza A virus NS1 protein binds p85beta and activates
Skinner, M.A. (2017). Constitutively elevated levels of SOCS1 suppress phosphatidylinositol-3-kinase signaling. Proc. Natl. Acad. Sci. U.S.A.
innate responses in DF-1 immortalised chicken fibroblast cells. Sci. Rep. 103, 14194–14199.
7, 17485. https://doi.org/10.1038/s41598-017-17730-2 Hale, B.G., Batty, I.H., Downes, C.P., and Randall, R.E. (2008a). Binding of
Gómez-Puertas, P., Albo, C., Pérez-Pastrana, E., Vivo, A., and Portela, A. influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests
(2000). Influenza virus matrix protein is the major driving force in virus a novel mechanism for phosphoinositide 3-kinase activation. J. Biol.
budding. J. Virol. 74, 11538–11547. Chem. 283, 1372–1380.
González, S., and Ortín, J. (1999). Distinct regions of influenza virus PB1 Hale, B.G., Randall, R.E., Ortin, J., and Jackson, D. (2008b). The
polymerase subunit recognize vRNA and cRNA templates. EMBO J. 18, multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89,
3767–3775. https://doi.org/10.1093/emboj/18.13.3767 2359–2376.
González, S., Zürcher, T., and Ortín, J. (1996). Identification of two separate Halvorson, D.A. (2002). The control of H5 or H7 mildly pathogenic avian
domains in the influenza virus PB1 protein involved in the interaction influenza: a role for inactivated vaccine. Avian Pathol. 31, 5–12. https://
with the PB2 and PA subunits: a model for the viral RNA polymerase doi.org/10.1080/03079450120106570
structure. Nucleic Acids Res. 24, 4456–4463. Han, T., and Marasco, W.A. (2011). Structural basis of influenza virus
Gonzalez-Reiche, A.S., Müller, M.L., Ortiz, L., Cordón-Rosales, C., and neutralization. Ann. N. Y. Acad. Sci. 1217, 178–190. https://doi.
Perez, D.R. (2016). Prevalence and diversity of low pathogenicity avian org/10.1111/j.1749-6632.2010.05829.x
influenza viruses in wild birds in Guatemala, 2010-2013. Avian Dis. 60 Hansbro, P.M., Warner, S., Tracey, J.P., Arzey, K.E., Selleck, P., O’Riley, K.,
(Suppl. 1), 359–364. https://doi.org/10.1637/11130-050715-Reg Beckett, E.L., Bunn, C., Kirkland, P.D., Vijaykrishna, D., et al. (2010).
Gonzalez-Reiche, A.S., Nelson, M.I., Angel, M., Müller, M.L., Ortiz, L., Dutta, Surveillance and analysis of avian influenza viruses, Australia. Emerging
J., van Bakel, H., Cordon-Rosales, C., and Perez, D.R. (2017). Evidence Infect. Dis. 16, 1896–1904. https://doi.org/10.3201/eid1612.100776
of intercontinental spread and uncommon variants of low-pathogenicity Harris, A., Forouhar, F., Qiu, S., Sha, B., and Luo, M. (2001). The crystal
avian influenza viruses in ducks overwintering in Guatemala. mSphere 2, structure of the influenza matrix protein M1 at neutral pH: M1-M1
e00362–16. https://doi.org/10.1128/mSphere.00362-16 protein interfaces can rotate in the oligomeric structures of M1. Virology
Gonzalez-Reicheabc, A.S., and Perez, D.R. (2012). Where do avian influenza 289, 34–44. https://doi.org/10.1006/viro.2001.1119
viruses meet in the Americas? Avian Dis. 56 (Suppl. 4), 1025–1033. Hashimoto, G., Wright, P.F., and Karzon, D.T. (1983). Antibody-dependent
https://doi.org/10.1637/10203-041412-Reg.1 cell-mediated cytotoxicity against influenza virus-infected cells. J. Infect.
Gorai, T., Goto, H., Noda, T., Watanabe, T., Kozuka-Hata, H., Oyama, Dis. 148, 785–794.
M., Takano, R., Neumann, G., Watanabe, S., and Kawaoka, Y. (2012). Hay, A.J., Lomniczi, B., Bellamy, A.R., and Skehel, J.J. (1977). Transcription
F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma of the influenza virus genome. Virology 83, 337–355.
membrane is critical for efficient influenza virus budding. Proc. Hayashi, T., Chaimayo, C., McGuinness, J., and Takimoto, T. (2016). Critical
Natl. Acad. Sci. U.S.A. 109, 4615–4620. https://doi.org/10.1073/ role of the PA-X C-Terminal domain of influenza A virus in its subcellular
pnas.1114728109 localization and shutoff activity. J. Virol. 90, 7131–7141. https://doi.
Gorman, O.T., Donis, R.O., Kawaoka, Y., and Webster, R.G. (1990). org/10.1128/JVI.00954-16
Evolution of influenza A virus PB2 genes: implications for evolution of Helenius, A. (1992). Unpacking the incoming influenza virus. Cell 69,
the ribonucleoprotein complex and origin of human influenza A virus. J. 577–578.
Virol. 64, 4893–4902. Herfst, S., Chutinimitkul, S., Ye, J., de Wit, E., Munster, V.J., Schrauwen, E.J.,
Goto, H., Muramoto, Y., Noda, T., and Kawaoka, Y. (2013). The Bestebroer, T.M., Jonges, M., Meijer, A., Koopmans, M., et al. (2010).
genome-packaging signal of the influenza A virus genome comprises a Introduction of virulence markers in PB2 of pandemic swine-origin