Page 44 - Avian Virology: Current Research and Future Trends
P. 44

Avian Influenza Virus |   37
            2013. Emerging Infect. Dis. 20, 1745–1749. https://doi.org/10.3201/  Sanz-Ezquerro, J.J., Fernández Santarén, J., Sierra, T., Aragón, T., Ortega,
            eid2010.140512                                        J., Ortín, J., Smith, G.L., and Nieto, A. (1998). The PA influenza virus
          Ramos, S., MacLachlan, M., and Melton, A. (2017). Impacts of the   polymerase subunit is a phosphorylated protein. J. Gen. Virol.  79,
            2014-2015 highly pathogenic avian infuenza outbreak on the u.s. poultry   471–478. https://doi.org/10.1099/0022-1317-79-3-471.
            sector, USDA, ed. (Economic Research Service), pp. 20.  Schäfer, W. (1955). Vergleichender sero-immunologische Untersuchungen
          Ranaware,  P.B.,  Mishra,  A.,  Vijayakumar,  P.,  Gandhale,  P.N.,  Kumar,  H.,   über die Viren der Influenza und klassischen Geflügelpest. Z. Naturf.
            Kulkarni, D.D., and Raut, A.A. (2016). Genome wide host gene   10b, 81–91.
            expression analysis in chicken lungs infected with avian influenza   Schmolke, M., Manicassamy, B., Pena, L., Sutton, T., Hai, R., Varga, Z.T.,
            viruses. PLOS ONE  11, e0153671. https://doi.org/10.1371/journal.  Hale, B.G., Steel, J., Pérez, D.R., and García-Sastre, A. (2011). Differential
            pone.0153671                                          contribution of PB1-F2 to the virulence of highly pathogenic H5N1
          Reed, M.L., Bridges, O.A., Seiler, P., Kim, J.K., Yen, H.L., Salomon, R.,   influenza  A  virus  in  mammalian  and  avian  species.  PLOS  Pathog.  7,
            Govorkova, E.A., Webster, R.G., and Russell, C.J. (2010). The pH of   e1002186. https://doi.org/10.1371/journal.ppat.1002186.
            activation of the hemagglutinin protein regulates H5N1 influenza virus   Scholtissek, C. (1994). Source for influenza pandemics. Eur. J. Epidemiol.
            pathogenicity and transmissibility in ducks. J. Virol.  84, 1527–1535.   10, 455–458.
            https://doi.org/10.1128/JVI.02069-09                Scholtissek, C. (1995). Molecular evolution of influenza viruses. Virus
          Resa-Infante, P., Jorba, N., Zamarreño, N., Fernández, Y., Juárez, S., and   Genes 11, 209–215.
            Ortín, J. (2008). The host-dependent interaction of alpha-importins with   Scholtissek, C. (1997). Molecular epidemiology of influenza. Arch. Virol.
            influenza PB2 polymerase subunit is required for virus RNA replication.   Suppl. 13, 99–103.
            PLOS ONE 3, e3904. https://doi.org/10.1371/journal.pone.0003904  Schroeder, C., Ford, C.M., Wharton, S.A., and Hay, A.J. (1994). Functional
          Resa-Infante, P., Jorba, N., Coloma, R., and Ortin, J. (2011). The influenza   reconstitution in lipid vesicles of influenza virus M2 protein expressed
            virus RNA synthesis machine: advances in its structure and function.   by baculovirus: evidence for proton transfer activity. J. Gen. Virol. 75,
            RNA Biol. 8, 207–215.                                 3477–3484. https://doi.org/10.1099/0022-1317-75-12-3477.
          Rimondi, A., Xu, K., Craig, M.I., Shao, H., Ferreyra, H., Rago, M.V., Romano,   Schulman, J.L., Khakpour, M., and Kilbourne, E.D. (1968). Protective effects
            M., Uhart, M., Sutton, T., Ferrero, A., et al. (2011). Phylogenetic analysis   of specific immunity to viral neuraminidase on influenza virus infection
            of H6 influenza viruses isolated from rosy-billed pochards (Netta   of mice. J. Virol. 2, 778–786.
            peposaca) in Argentina reveals the presence of different HA gene clusters.   Schulz, O., Pichlmair, A., Rehwinkel, J., Rogers, N.C., Scheuner, D., Kato,
            J. Virol. 85, 13354–13362. https://doi.org/10.1128/JVI.05946-11  H., Takeuchi, O., Akira, S., Kaufman, R.J., and Reis e Sousa, C. (2010).
          Robb, N.C., Smith, M.,  Vreede, F.T., and Fodor, E. (2009). NS2/NEP   Protein kinase R contributes to immunity against specific viruses by
            protein regulates transcription and replication of the influenza virus   regulating interferon mRNA integrity. Cell Host Microbe 7, 354–361.
            RNA genome. J. Gen. Virol. 90, 1398–1407.             https://doi.org/10.1016/j.chom.2010.04.007.
          Roberts, K.L., Leser, G.P., Ma, C., and Lamb, R.A. (2013). The amphipathic   Sha, B., and Luo, M. (1997). Structure of a bifunctional membrane-RNA
            helix of influenza A virus M2 protein is required for filamentous bud   binding protein, influenza virus matrix protein M1. Nat. Struct. Biol. 4,
            formation and scission of filamentous and spherical particles. J. Virol. 87,   239–244.
            9973–9982. https://doi.org/10.1128/JVI.01363-13     Shahsavandi, S., Salmanian, A.H., Ghorashi, S.A., Masoudi, S., and Ebrahimi,
          Roberts, P.C., and Compans, R.W. (1998). Host cell dependence of viral   M.M. (2012). Evolutionary characterization of hemagglutinin gene of
            morphology. Proc. Natl. Acad. Sci. U.S.A. 95, 5746–5751.  H9N2 influenza viruses isolated from Asia. Res. Vet. Sci. 93, 234–239.
          Roberts, P.C., Lamb, R.A., and Compans, R.W. (1998). The M1 and M2   https://doi.org/10.1016/j.rvsc.2011.07.033.
            proteins of influenza A virus are important determinants in filamentous   Shapiro, G.I., and Krug, R.M. (1988). Influenza virus RNA replication in
            particle formation. Virology 240, 127–137.            vitro: synthesis of viral template RNAs and virion RNAs in the absence
          Robertson, J.S., Schubert, M., and Lazzarini, R.A. (1981). Polyadenylation   of an added primer. J. Virol. 62, 2285–2290.
            sites for influenza virus mRNA. J. Virol. 38, 157–163.  Shaw, M., and Palese, P. (2013a). Orthomyxoviridae, Vol 1 (Lippincott
          Rodriguez, A., Pérez-González, A., and Nieto, A. (2011). Cellular human   Williams and Wilkins, Philadelphia, PA).
            CLE/C14orf166 protein interacts with influenza virus polymerase and   Shaw, M.L., and Palese, P. (2013b). Orthomyxoviridae. In Fields Virology,
            is required for viral replication. J. Virol. 85, 12062–12066. https://doi.  Knipe, D.M., and Howley, P.M., eds. (Lippincott Williams and Wilkins,
            org/10.1128/JVI.00684-11.                             Philadelphia, PN), pp. 1151–1185.
          Root, C.N., Wills, E.G., McNair, L.L., and Whittaker, G.R. (2000). Entry of   Shepard, S.S., Davis, C.T., Bahl, J., Rivailler, P., York, I.A., and Donis, R.O.
            influenza viruses into cells is inhibited by a highly specific protein kinase   (2014). LABEL: fast and accurate lineage assignment with assessment
            C inhibitor. J. Gen. Virol. 81, 2697–2705.            of H5N1 and H9N2 influenza A hemagglutinins. PLOS ONE 9, e86921.
          Ruigrok, R.W., Barge, A., Durrer, P., Brunner, J., Ma, K., and Whittaker, G.R.   https://doi.org/10.1371/journal.pone.0086921.
            (2000). Membrane interaction of influenza virus M1 protein. Virology   Shi, M., Jagger, B.W., Wise, H.M., Digard, P., Holmes, E.C., and Taubenberger,
            267, 289–298. https://doi.org/10.1006/viro.1999.0134.  J.K. (2012). Evolutionary conservation of the PA-X open reading frame
          Russell, R.J., Haire, L.F., Stevens, D.J., Collins, P.J., Lin, Y.P., Blackburn,   in segment 3 of influenza A virus. J. Virol. 86, 12411–12413. https://doi.
            G.M., Hay, A.J., Gamblin, S.J., and Skehel, J.J. (2006). The structure of   org/10.1128/JVI.01677-12.
            H5N1 avian influenza neuraminidase suggests new opportunities for   Shih, S.R., Suen, P.C., Chen, Y.S., and Chang, S.C. (1998). A novel spliced
            drug design. Nature 443, 45–49.                       transcript of influenza A/WSN/33 virus. Virus Genes 17, 179–183.
          Rust, M.J., Lakadamyali, M., Zhang, F., and Zhuang, X. (2004). Assembly   Shim, J.M., Kim, J., Tenson, T., Min, J.Y., and Kainov, D.E. (2017). Influenza
            of endocytic machinery around individual influenza viruses during viral   virus infection, interferon response, viral counter-response, and
            entry. Nat. Struct. Mol. Biol.  11, 567–573. https://doi.org/10.1038/  apoptosis. Viruses 9, E223.
            nsmb769.                                            Shimbo, K., Brassard, D.L., Lamb, R.A., and Pinto, L.H. (1996). Ion
          Saito, T., Lim, W., Suzuki, T., Suzuki, Y., Kida, H., Nishimura, S.I., and   selectivity  and  activation  of  the  M2  ion  channel  of  influenza  virus.
            Tashiro, M. (2001). Characterization of a human H9N2 influenza virus   Biophys. J. 70, 1335–1346.
            isolated in Hong Kong. Vaccine 20, 125–133.         Shope, R.E. (1931). Swine influenza : iii. Filtration experiments and etiology.
          Santos,  J.J.S.,  Obadan,  A.O.,  Garcia,  S.C.,  Carnaccini,  S.,  Kapczynski,   J. Exp. Med. 54, 373–385.
            D.R., Pantin-Jackwood, M., Suarez, D.L., and Perez, D.R. (2017).   Sieczkarski, S.B., and Whittaker, G.R. (2005). Characterization of the host
            Short-  and long-term protective efficacy against clade 2.3.4.4 H5N2   cell entry of filamentous influenza virus. Arch. Virol. 150, 1783–1796.
            highly  pathogenic  avian  influenza  virus  following  prime-boost   https://doi.org/10.1007/s00705-005-0558-1.
            vaccination in turkeys. Vaccine 35, 5637–5643.      Silverman, R.H. (2007). Viral encounters with 2’,5′-oligoadenylate
          Sanz-Ezquerro, J.J., Zürcher, T., de la Luna,  S., Ortín,  J.,  and Nieto, A.   synthetase and RNase L during the interferon antiviral response. J. Virol.
            (1996). The amino-terminal one-third of the influenza virus PA protein   81, 12720–12729.
            is responsible for the induction of proteolysis. J. Virol. 70, 1905–1911.
   39   40   41   42   43   44   45   46   47   48   49