Page 45 - Avian Virology: Current Research and Future Trends
P. 45
38 | Perez et al.
Simpson-Holley, M., Ellis, D., Fisher, D., Elton, D., McCauley, J., and Digard, from the US 2014-2015 outbreak have an unusually long pre-clinical
P. (2002). A functional link between the actin cytoskeleton and lipid rafts period in turkeys. BMC Vet. Res. 12, 260. https://doi.org/10.1186/
during budding of filamentous influenza virions. Virology 301, 212–225. s12917-016-0890-6.
Sims, L.D., Ellis, T.M., Liu, K.K., Dyrting, K., Wong, H., Peiris, M., Stauffer, S., Feng, Y., Nebioglu, F., Heilig, R., Picotti, P., and Helenius, A.
Guan, Y., and Shortridge, K.F. (2003a). Avian influenza in Hong (2014). Stepwise priming by acidic pH and a high K+ concentration
Kong 1997-2002. Avian Dis. 47 (Suppl. 3), 832–838. https://doi. is required for efficient uncoating of influenza A virus cores after
org/10.1637/0005-2086-47.s3.832. penetration. J. Virol. 88, 13029–13046. https://doi.org/10.1128/
Sims, L.D., Guan, Y., Ellis, T.M., Liu, K.K., Dyrting, K., Wong, H., Kung, N.Y., JVI.01430-14.
Shortridge, K.F., and Peiris, M. (2003b). An update on avian influenza Stech, O., Veits, J., Abdelwhab, e.l.-.S.M., Wessels, U., Mettenleiter, T.C.,
in Hong Kong 2002. Avian Dis. 47 (Suppl. 3), 1083–1086. https://doi. and Stech, J. (2015). The neuraminidase stalk deletion serves as major
org/10.1637/0005-2086-47.s3.1083. virulence determinant of H5N1 highly pathogenic avian influenza viruses
Sims, L.D., Domenech, J., Benigno, C., Kahn, S., Kamata, A., Lubroth, in chicken. Sci. Rep. 5, 13493. https://doi.org/10.1038/srep13493.
J., Martin, V., and Roeder, P. (2005). Origin and evolution of highly Stobart, C.C., and Moore, M.L. (2014). RNA virus reverse genetics and
pathogenic H5N1 avian influenza in Asia. Vet. Rec. 157, 159–164. vaccine design. Viruses 6, 2531–2550. https://doi.org/10.3390/
Skehel, J.J., and Wiley, D.C. (2000). Receptor binding and membrane fusion v6072531.
in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, Stoute, S., Chin, R., Crossley, B., Gabriel Sentíes-Cué, C., Bickford, A.,
531–569. Pantin-Jackwood, M., Breitmeyer, R., Jones, A., Carnaccini, S., and
Skeik, N., and Jabr, F.I. (2008). Influenza viruses and the evolution of avian Shivaprasad, H.L. (2016). Highly pathogenic eurasian H5N8 avian
influenza virus H5N1. Int. J. Infect. Dis. 12, 233–238. influenza outbreaks in two commercial poultry flocks in California. Avian
Slemons, R.D., and Easterday, B.C. (1977). Type-A influenza viruses in the Dis. 60, 688–693. https://doi.org/10.1637/11314-110615-Case.1.
feces of migratory waterfowl. J. Am. Vet. Med. Assoc. 171, 947–948. Su, S., Bi, Y., Wong, G., Gray, G.C., Gao, G.F., and Li, S. (2015). Epidemiology,
Slemons, R.D., and Easterday, B.C. (1978). Virus replication in the digestive Evolution, and Recent Outbreaks of Avian Influenza Virus in China. J.
tract of ducks exposed by aerosol to type-A influenza. Avian Dis. 22, Virol. 89, 8671–8676. https://doi.org/10.1128/JVI.01034-15.
367–377. Suarez, D.L., and Schultz-Cherry, S. (2000). Immunology of avian influenza
Slemons, R.D., Condobery, P.K., and Swayne, D.E. (1991). Assessing virus: a review. Dev. Comp. Immunol. 24, 269–283.
pathogenicity potential of waterfowl-origin type A influenza viruses in Subbarao, E.K., London, W., and Murphy, B.R. (1993). A single amino acid
chickens. Avian Dis. 35, 210–215. in the PB2 gene of influenza A virus is a determinant of host range. J.
Smith, J., Smith, N., Yu, L., Paton, I.R., Gutowska, M.W., Forrest, H.L., Virol. 67, 1761–1764.
Danner, A.F., Seiler, J.P., Digard, P., Webster, R.G., et al. (2015). A Subbarao, E.K., Park, E.J., Lawson, C.M., Chen, A.Y., and Murphy, B.R.
comparative analysis of host responses to avian influenza infection (1995). Sequential addition of temperature-sensitive missense
in ducks and chickens highlights a role for the interferon-induced mutations into the PB2 gene of influenza A transfectant viruses can effect
transmembrane proteins in viral resistance. BMC Genomics 16, 574. an increase in temperature sensitivity and attenuation and permits the
https://doi.org/10.1186/s12864-015-1778-8. rational design of a genetically engineered live influenza A virus vaccine.
Smith, W., Andrewes, C.H., and Laidlaw, P.P. (1933). A virus obtained from J. Virol. 69, 5969–5977.
influenza patients. Lancet 222, 66–68. Subbarao, K., Chen, H., Swayne, D., Mingay, L., Fodor, E., Brownlee, G.,
Soltanialvar, M., Shoushtari, H., Bozorgmehrifard, M., Charkhkar, S., Xu, X., Lu, X., Katz, J., Cox, N., et al. (2003). Evaluation of a genetically
and Akbarnejad, F. (2012). Sequence and phylogenetic analysis of modified reassortant H5N1 influenza A virus vaccine candidate
neuraminidase genes of H9N2 avian influenza viruses isolated from generated by plasmid-based reverse genetics. Virology 305, 192–200.
commercial broiler chicken in Iran (2008 and 2009). Trop. Anim. Health Sugiyama, K., Obayashi, E., Kawaguchi, A., Suzuki, Y., Tame, J.R., Nagata,
Prod. 44, 419–425. https://doi.org/10.1007/s11250-011-9913-2. K., and Park, S.Y. (2009). Structural insight into the essential PB1-PB2
Song, H., Nieto, G.R., and Perez, D.R. (2007). A new generation of modified subunit contact of the influenza virus RNA polymerase. EMBO J. 28,
live-attenuated avian influenza viruses using a two-strategy combination 1803–1811. https://doi.org/10.1038/emboj.2009.138.
as potential vaccine candidates. J. Virol. 81, 9238–9248. Sugrue, R.J., and Hay, A.J. (1991). Structural characteristics of the M2
Song, J., Feng, H., Xu, J., Zhao, D., Shi, J., Li, Y., Deng, G., Jiang, Y., Li, X., Zhu, protein of influenza A viruses: evidence that it forms a tetrameric
P., et al. (2011). The PA protein directly contributes to the virulence of channel. Virology 180, 617–624.
H5N1 avian influenza viruses in domestic ducks. J. Virol. 85, 2180–2188. Sui, J., Hwang, W.C., Perez, S., Wei, G., Aird, D., Chen, L.M., Santelli, E.,
https://doi.org/10.1128/JVI.01975-10. Stec, B., Cadwell, G., Ali, M., et al. (2009). Structural and functional
Sonnberg, S., Webby, R.J., and Webster, R.G. (2013). Natural history of bases for broad-spectrum neutralization of avian and human influenza
highly pathogenic avian influenza H5N1. Virus Res. 178, 63–77. https:// A viruses. Nat. Struct. Mol. Biol. 16, 265–273. https://doi.org/10.1038/
doi.org/10.1016/j.virusres.2013.05.009. nsmb.1566.
Sorrell, E.M., Song, H., Pena, L., and Perez, D.R. (2010). A 27-amino-acid Sun, X., Shi, Y., Lu, X., He, J., Gao, F., Yan, J., Qi, J., and Gao, G.F. (2013).
deletion in the neuraminidase stalk supports replication of an avian Bat-derived influenza hemagglutinin H17 does not bind canonical avian
H2N2 influenza A virus in the respiratory tract of chickens. J. Virol. 84, or human receptors and most likely uses a unique entry mechanism. Cell
11831–11840. https://doi.org/10.1128/JVI.01460-10. Rep. 3, 769–778. https://doi.org/10.1016/j.celrep.2013.01.025.
Spackman, E., and Killian, M.L. (2014). Avian influenza virus isolation, Sutton, T.C., Obadan, A., Lavigne, J., Chen, H., Li, W., and Perez, D.R. (2014).
propagation, and titration in embryonated chicken eggs. Methods Mol. Genome rearrangement of influenza virus for anti-viral drug screening.
Biol. 1161, 125–140. https://doi.org/10.1007/978-1-4939-0758-8_12. Virus Res. 189, 14–23. https://doi.org/10.1016/j.virusres.2014.05.003.
Spackman, E., and Pantin-Jackwood, M.J. (2014). Practical aspects of Swanson, J.A., and Hoppe, A.D. (2004). The coordination of signaling during
vaccination of poultry against avian influenza virus. Vet. J. 202, 408–415. Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 76, 1093–1103.
https://doi.org/10.1016/j.tvjl.2014.09.017. Swayne, D.E., and Halvorson, D.A. (2003). Influenza. In Diseases of Poultry,
Spackman, E., Senne, D.A., Myers, T.J., Bulaga, L.L., Garber, L.P., Perdue, Saif, Y.M., ed. (Iowa State Press. Blackwell Publishing Co., Ames, IA),
M.L., Lohman, K., Daum, L.T., and Suarez, D.L. (2002). Development pp. 135–160.
of a real-time reverse transcriptase PCR assay for type A influenza virus Swayne, D.E., and Spackman, E. (2013). Current status and future needs
and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 40, in diagnostics and vaccines for high pathogenicity avian influenza. Dev.
3256–3260. Biol. 135, 79–94. https://doi.org/10.1159/000325276.
Spackman, E., Pantin-Jackwood, M.J., Swayne, D.E., and Suarez, D.L. Swayne, D.E., and Suarez, D.L. (2000). Highly pathogenic avian influenza.
(2009). An evaluation of avian influenza diagnostic methods with Rev. Sci. Tech. 19, 463–482.
domestic duck specimens. Avian Dis. 53, 276–280. https://doi. Swayne, D.E., Garcia, M., Beck, J.R., Kinney, N., and Suarez, D.L. (2000).
org/10.1637/8520-111708-Reg.1. Protection against diverse highly pathogenic H5 avian influenza viruses
Spackman, E., Pantin-Jackwood, M.J., Kapczynski, D.R., Swayne, D.E., and in chickens immunized with a recombinant fowlpox vaccine containing
Suarez, D.L. (2016). H5N2 Highly pathogenic avian influenza viruses an H5 avian influenza hemagglutinin gene insert. Vaccine 18, 1088–1095.