Page 46 - Avian Virology: Current Research and Future Trends
P. 46

Avian Influenza Virus |   39
          Swayne, D.E., Beck, J.R., Perdue, M.L., and Beard, C.W. (2001). Efficacy of   human-to-human transmission of avian influenza A (H9N2) viruses in
            vaccines in chickens against highly pathogenic Hong Kong H5N1 avian   Hong Kong, China 1999. Emerging Infect. Dis. 8, 154–159.
            influenza. Avian Dis. 45, 355–365.                  Van Campen, H., Easterday, B.C., and Hinshaw, V.S. (1989). Virulent avian
          Swayne, D.E., Pavade, G., Hamilton, K., Vallat, B., and Miyagishima, K. (2011).   influenza A viruses: their effect on avian lymphocytes and macrophages
            Assessment of national strategies for control of high-pathogenicity avian   in vivo and in vitro. J. Gen. Virol.  70, 2887–2895.  https://doi.
            influenza and low-pathogenicity notifiable avian influenza in poultry,   org/10.1099/0022-1317-70-11-2887.
            with emphasis on vaccines and vaccination. Rev. Sci. Tech. 30, 839–870.  van de Sandt, C.E., Kreijtz, J.H., and Rimmelzwaan, G.F. (2012). Evasion of
          Swayne,  D.E.,  Suarez,  D.,  and  Sims,  L.D.  (2013).  Influenza,  13th  edn   influenza A viruses from innate and adaptive immune responses. Viruses
            (Blackwell Publishing, Ames, IA).                     4, 1438–1476. https://doi.org/10.3390/v4091438.
          Swayne, D.E., Spackman, E., and Pantin-Jackwood, M. (2014). Success   Vanhaesebroeck, B., Ali, K., Bilancio, A., Geering, B., and Foukas, L.C.
            factors for avian influenza vaccine use in poultry and potential impact at   (2005). Signalling by PI3K isoforms: insights from gene-targeted mice.
            the wild bird-agricultural interface. Ecohealth 11, 94–108. https://doi.  Trends Biochem. Sci. 30, 194–204.
            org/10.1007/s10393-013-0861-3.                      Varga, Z.T., Ramos, I., Hai, R., Schmolke, M., García-Sastre, A.,
          Takada, A., Kuboki, N., Okazaki, K., Ninomiya, A., Tanaka, H., Ozaki,   Fernandez-Sesma, A., and Palese, P. (2011). The influenza virus protein
            H., Itamura, S., Nishimura, H., Enami, M., Tashiro, M., et al. (1999).   PB1-F2 inhibits the induction of type I interferon at the level of the
            Avirulent  avian  influenza  virus  as  a  vaccine  strain  against  a  potential   MAVS adaptor protein. PLOS Pathog. 7, e1002067. w.
            human pandemic. J. Virol. 73, 8303–8307.            Varga, Z.T., Grant, A., Manicassamy, B., and Palese, P. (2012). Influenza virus
          Takizawa, T., Ohashi, K., and Nakanishi, Y. (1996). Possible involvement of   protein PB1-F2 inhibits the induction of type I interferon by binding to
            double-stranded RNA-activated protein kinase in cell death by influenza   MAVS and decreasing mitochondrial membrane potential. J. Virol. 86,
            virus infection. J. Virol. 70, 8128–8132.             8359–8366. https://doi.org/10.1128/JVI.01122-12.
          Talon, J., Horvath, C.M., Polley, R., Basler, C.F., Muster, T., Palese, P., and   Veit, M., and Schmidt, M.F. (1993). Timing of palmitoylation of influenza
            García-Sastre, A. (2000). Activation of interferon regulatory factor 3 is   virus hemagglutinin. FEBS Lett. 336, 243–247.
            inhibited by the influenza A virus NS1 protein. J. Virol. 74, 7989–7996.  Vervelde, L., Reemers, S.S., van Haarlem, D.A., Post, J., Claassen, E., Rebel,
          Tamm, L.K. (2003). Hypothesis: spring-loaded boomerang mechanism of   J.M., and Jansen, C.A. (2013). Chicken dendritic cells are susceptible
            influenza hemagglutinin-mediated membrane fusion. Biochim. Biophys.   to highly pathogenic avian influenza viruses which induce strong
            Acta 1614, 14–23.                                     cytokine responses. Dev. Comp. Immunol.  39, 198–206.  https://doi.
          Tate, M.D., Job, E.R., Deng, Y.M., Gunalan, V.,  Maurer-Stroh, S., and   org/10.1016/j.dci.2012.10.011.
            Reading, P.C. (2014). Playing hide and seek: how glycosylation of the   Villarreal, C. (2007). Experience in control of avian influenza in the
            influenza virus hemagglutinin can modulate the immune response to   Americas. Dev. Biol. 130, 53–60.
            infection. Viruses 6, 1294–1316. https://doi.org/10.3390/v6031294.  Villarreal, C. (2009). Avian influenza in Mexico. Rev. Sci. Tech. 28, 261–265.
          Taubenberger,  J.K.,  and  Morens,  D.M.  (2009).  Pandemic  influenza  –   Virelizier, J.L., Allison, A.C., and Schild, G.C. (1974a). Antibody responses
            including a risk assessment of H5N1. Rev. Sci. Tech. 28, 187–202.  to antigenic determinants of influenza virus hemagglutinin. II.
          Tchatalbachev, S., Flick, R., and Hobom, G. (2001). The packaging signal of   Original antigenic sin: a bone marrow-derived lymphocyte memory
            influenza viral RNA molecules. RNA 7, 979–989.        phenomenon modulated by thymus-derived lymphocytes. J. Exp. Med.
          Tian, J., Qi, W., Li, X., He, J., Jiao, P., Zhang, C., Liu, G.Q., and Liao, M.   140, 1571–1578.
            (2012). A single E627K mutation in the PB2 protein of H9N2 avian   Virelizier, J.L., Postlethwaite, R., Schild, G.C., and Allison, A.C. (1974b).
            influenza virus increases virulence by inducing higher glucocorticoids   Antibody responses to antigenic determinants of influenza virus
            (GCs) level. PLOS ONE 7, e38233. https://doi.org/10.1371/journal.  hemagglutinin. I. Thymus dependence of antibody formation and
            pone.0038233.                                         thymus  independence  of  immunological  memory.  J.  Exp.  Med.  140,
          Tombari, W., Nsiri, J., Larbi, I., Guerin, J.L., and Ghram, A. (2011).   1559–1570.
            Genetic evolution of low pathogenecity H9N2 avian influenza viruses   Wang, J., Sun, Y., Xu, Q., Tan, Y., Pu, J., Yang, H., Brown, E.G., and Liu, J.
            in Tunisia: acquisition of new mutations. Virol. J. 8, 467. https://doi.  (2012). Mouse-adapted H9N2 influenza A virus PB2 protein M147L
            org/10.1186/1743-422X-8-467.                          and E627K mutations are critical for high virulence. PLOS ONE  7,
          Tomescu, A.I., Robb, N.C., Hengrung, N., Fodor, E., and Kapanidis, A.N.   e40752. https://doi.org/10.1371/journal.pone.0040752.
            (2014). Single-molecule FRET reveals a corkscrew RNA structure for   Wang, P., Palese, P., and O’Neill, R.E. (1997). The NPI-1/NPI-3
            the polymerase-bound influenza virus promoter. Proc. Natl. Acad. Sci.   (karyopherin alpha) binding site on the influenza a virus nucleoprotein
            U.S.A. 111, E3335–42. https://doi.org/10.1073/pnas.1406056111.  NP is a nonconventional nuclear localization signal. J. Virol. 71, 1850–
          Topham, D.J., and Doherty, P.C. (1998). Clearance of an influenza A virus by   1856.
            CD4+ T-cells is inefficient in the absence of B cells. J. Virol. 72, 882–885.  Wang, R., Song, A., Levin, J., Dennis, D., Zhang, N.J., Yoshida, H., Koriazova,
          Toyoda, T., Kobayashi, M., Nakada, S., and Ishihama, A. (1996). Molecular   L., Madura, L., Shapiro, L., Matsumoto, A., et al. (2008). Therapeutic
            dissection of influenza virus RNA polymerase: PB1 subunit alone is able   potential of a fully human monoclonal antibody against influenza A virus
            to catalyze RNA synthesis. Virus Genes 12, 155–163.   M2 protein. Antiviral Res.  80, 168–177.  https://doi.org/10.1016/j.
          Tripathi, S., Batra, J., Cao, W., Sharma, K., Patel, J.R., Ranjan, P., Kumar,   antiviral.2008.06.002.
            A., Katz, J.M., Cox, N.J., Lal, R.B.,  et al. (2013). Influenza A virus   Wang, X., Li, M., Zheng, H., Muster, T., Palese, P., Beg, A.A., and
            nucleoprotein induces apoptosis in human airway epithelial cells:   García-Sastre, A. (2000). Influenza A virus NS1 protein prevents
            implications of a novel interaction between nucleoprotein and host   activation of NF-kappaB and induction of alpha/beta interferon. J. Virol.
            protein Clusterin. Cell Death Dis.  4, e562.  https://doi.org/10.1038/  74, 11566–11573.
            cddis.2013.89.                                      Weber, M., Sediri, H., Felgenhauer, U., Binzen, I., Bänfer, S., Jacob, R.,
          Tweed, S.A., Skowronski, D.M., David, S.T., Larder, A., Petric, M., Lees,   Brunotte, L., García-Sastre, A., Schmid-Burgk, J.L., Schmidt, T.,  et al.
            W., Li, Y., Katz, J., Krajden, M., Tellier, R., et al. (2004). Human illness   (2015). Influenza virus adaptation PB2-627K modulates nucleocapsid
            from avian influenza H7N3, British Columbia. Emerging Infect. Dis. 10,   inhibition by the pathogen sensor RIG-I. Cell Host Microbe 17, 309–319.
            2196–2199.                                          Webster, R.G. (1997). Influenza virus: transmission between species and
          Ulmanen, I., Broni, B., and Krug, R.M. (1983). Influenza virus   relevance to emergence of the next human pandemic. Arch. Virol. Suppl.
            temperature-sensitive cap (m7GpppNm)-dependent endonuclease. J.   13, 105–113.
            Virol. 45, 27–35.                                   Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., and Kawaoka, Y.
          USDA APHIS (United States Department of Agriculture Animal and Plant   (1992). Evolution and ecology of influenza A viruses. Microbiol. Rev. 56,
            Health Inspection Service) (2016). Final report for the 2014–2015   152–179.
            outbreak of highly pathogenic avian influenza (HPAI) in the United   Webster, R.G., Hinshaw, V.S., Bean, W.J., Turner, B., and Shortridge, K.F.
            States (United States Department of Agriculture, Washington, DC).   (1977). Influenza viruses from avian and porcine sources and their
          Uyeki, T.M., Chong, Y.H., Katz, J.M., Lim, W., Ho, Y.Y., Wang, S.S., Tsang,   possible role in the origin of human pandemic strains. Dev. Biol. Stand.
            T.H., Au, W.W., Chan, S.C., Rowe, T., et al. (2002). Lack of evidence for   39, 461–468.
   41   42   43   44   45   46   47   48   49   50   51